NOZZLE PRESSURE DEFECT DETECTION IN EXTRUSION-BASED BIO 3D PRINTING USING VIDEO-BASED MOTION ESTIMATION

被引:0
|
作者
Rahman, Md Anisur [1 ]
Khan, Md Asif Hasan [1 ]
Kim, Jinki [1 ]
机构
[1] Georgia Southern Univ, Statesboro, GA 30458 USA
来源
PROCEEDINGS OF ASME 2024 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS 2024 | 2024年
基金
美国国家科学基金会;
关键词
Structural health monitoring; additive manufacturing; bioprinting; extrusion pressure; nozzle clogging; defect detection; phase-based motion estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The emergence of bio-additive manufacturing marks a crucial advancement in the field of biomedical engineering. For successful biomedical applications including bioprinted organ transplants, ensuring the quality of printed structures poses a significant challenge. Among the major challenges encountered in ensuring the structural integrity of bioprinting, nozzle clogging stands out as one of the frequent concerns in the process. It disrupts the uniform distribution of extrusion pressure, leading to the formation of defective structures. This study focused on detecting defects arising from the irregularities in extrusion pressure. To address this concern, a video-based motion estimation technique, which emerged as a novel non-contact and non-destructive technique for assessing bio 3D printed structures, is employed in this research. While other advancements, including contact-based and laser-based approaches, may offer limited performance due to the soft, lightweight, and translucent nature of bioconstructs. In this study, defective and non-defective ear models are additively manufactured by an extrusion-based bioprinter with pneumatic dispensing. Extrusion pressure was strategically controlled to introduce defective bioprints similar to those caused by nozzle malfunctions. The vibration characteristics of the ear structures are captured by a high-speed camera and analyzed using phase-based motion estimation approaches. In addition to ambient excitations from the printing process, acoustic excitations from a subwoofer are employed to assess its impact on print quality. The increase in extrusion pressure, simulating clogged nozzle issues, resulted in significant changes in the vibration characteristics, including shifts in the resonance frequencies. By monitoring these modal property changes, defective bioconstructs could be reliably determined. These findings suggest that the proposed approach could effectively verify the structural integrity of additively manufactured bioconstructs. Implementing this method along with the real time defect detection technique will significantly enhance the structural integrity of additively manufactured bioconstructs and ultimately improve the production of healthy artificial organs, potentially saving countless lives.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Design and simulation of spiral blade in the nozzle for the extrusion-based 3D printing concrete
    Pu, Xianghao
    Zhang, Ruikang
    Du, Jiashuai
    Zhang, Hui
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025,
  • [2] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [3] Rheological Changes in Bio-Based Filaments Induced by Extrusion-Based 3D Printing Process
    Patti, Antonella
    Acierno, Stefano
    MATERIALS, 2024, 17 (15)
  • [4] Extrusion-based 3D printing of soft active materials
    Zhao, Jiayu
    Li, Xiao
    Ji, Donghwan
    Bae, Jinhye
    CHEMICAL COMMUNICATIONS, 2024, 60 (58) : 7414 - 7426
  • [5] EXTRUSION-BASED 3D PRINTING OF PORCELAIN: FEASIBLE REGIONS
    Bhardwaj, Abhinav
    Kalantar, Negar
    Molina, Elmer
    Zou, Na
    Pei, Zhijian
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [6] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    GELS, 2024, 10 (02)
  • [7] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [8] Hyaluronic acid as a bioink for extrusion-based 3D printing
    Petta, D.
    D'Amora, U.
    Ambrosio, L.
    Grijpma, D. W.
    Eglin, D.
    D'Este, M.
    BIOFABRICATION, 2020, 12 (03)
  • [9] Effects of nanocellulose on Alginate/Gelatin Bio-inks for Extrusion-based 3D Printing
    Han, Chenyang
    Wang, Xinyi
    Ni, Zhongjin
    Ni, Yihua
    Huan, Weiwei
    Lv, Yan
    Bai, Shuyang
    BioResources, 2020, 15 (04): : 7357 - 7373
  • [10] Effects of nanocellulose on Alginate/Gelatin Bio-inks for Extrusion-based 3D Printing
    Han, Chenyang
    Wang, Xinyi
    Ni, Zhongjin
    Ni, Yihua
    Huan, Weiwei
    Lv, Yan
    Bai, Shuyang
    BIORESOURCES, 2020, 15 (04): : 7357 - 7373