Climate changes cause various types of abiotic stress in plants, thus affecting plant growth and causing decline in yield. An urgent need exists to develop an environmentally friendly attitude based on principles of sustainable agriculture. Nanomaterials may improve plant growth and enhance crop productivity by handling the conditions considered stressful for plants in a sustainable and ecofriendly manner. Selenium (Se) has been put into the category of beneficial elements in plants. Se-enriched crops present a successful choice of dietary resource for Se-supplemented food and feed owing to their high bioavailability and accessibility. Researchers from distinct areas, including both nanoscience and plant science, should encourage emerging innovations that are linked with abiotic stress in crop production. The implementation of Se nanoparticles (SeNPs) is considered one of the predominating mechanisms by plants to ameliorate stressful conditions. Increasing evidence of earlier research revealed that SeNPs could enhance plant growth and development, nutrient bioavailability, soil fertility, and stress response while maintaining environmental safety. Meanwhile, some earlier studies reported that SeNPs might have a multilateral influence on plants dependent on diverse Se nanomaterial traits, doses, and plant species. More efforts are required to enhance the knowledge of how SeNPs impact crops exposed to different abiotic detrimental factors. In light of contemporary research challenges linked to SeNPs and the prolonged application of Se nanomaterials to plants, the aim of this review is elucidating the principal fruitful areas of SeNP exploration, comparisons with bulk Se, insights into mechanisms of abiotic stress alleviation in plants, existing research uncertainties, and practical challenges for SeNP applications under varying environments.