Epigenetics in Heart Failure

被引:0
作者
Ho, Jamie Sin Ying [1 ]
Jou, Eric [2 ,3 ]
Khong, Pek-Lan [4 ,5 ]
Foo, Roger S. Y. [1 ,6 ]
Sia, Ching-Hui [1 ,6 ]
机构
[1] Natl Univ Heart Ctr, Dept Cardiol, Singapore 119228, Singapore
[2] Univ Oxford, Dept Oncol, Oxford OX3 7DQ, England
[3] Univ Oxford, Kellogg Coll, Oxford OX2 6PN, England
[4] Natl Univ Hlth Syst, Natl Univ Hosp, Dept Diagnost Imaging, Singapore 119074, Singapore
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Diagnost Radiol, Singapore 119074, Singapore
[6] Natl Univ Singapore, Yong Loo Lin Sch Med, Cardiovasc Res Inst, Singapore 117597, Singapore
基金
英国医学研究理事会;
关键词
heart failure; epigenetic modification; personalized medicine; histone modifications; DNA methylation; INDUCED CARDIAC-HYPERTROPHY; HISTONE-DEACETYLASE; DNA METHYLATION; GENE-EXPRESSION; CLASS-I; INHIBITION; STRESS; MATRIX-METALLOPROTEINASE-9; PHOSPHORYLATION; ASSOCIATION;
D O I
10.3390/ijms252212010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heart failure is a clinical syndrome with rising global incidence and poor prognosis despite improvements in medical therapy. There is increasing research interest in epigenetic therapies for heart failure. Pathological cardiac remodelling may be driven by stress-activated cardiac signalling cascades, and emerging research has shown the involvement of epigenetic signals that regulate transcriptional changes leading to heart failure. In this review, we appraise the current evidence for the role of epigenetic modifications in heart failure. These include DNA methylation and histone modifications by methylation, acetylation, phosphorylation, ubiquitination and sumoylation, which are critical processes that establish an epigenetic pattern and translate environmental stress into genetic expression, leading to cardiac remodeling. We summarize the potential epigenetic therapies currently in development, including the limited clinical trials of epigenetic therapies in heart failure. The dynamic changes in the epigenome in the disease process require further elucidation, and so does the impact of this process on the development of therapeutics. Understanding the role of epigenetics in heart failure may pave the way for the identification of novel biomarkers and molecular targets, and facilitate the development of personalized therapies for this important condition.
引用
收藏
页数:15
相关论文
共 75 条
[51]   Effect of Apabetalone Added to Standard Therapy on Major Adverse Cardiovascular Events in Patients With Recent Acute Coronary Syndrome and Type 2 Diabetes A Randomized Clinical Trial [J].
Ray, Kausik K. ;
Nicholls, Stephen J. ;
Buhr, Kevin A. ;
Ginsberg, Henry N. ;
Johansson, Jan O. ;
Kalantar-Zadeh, Kamyar ;
Kulikowski, Ewelina ;
Toth, Peter P. ;
Wong, Norman ;
Sweeney, Michael ;
Schwartz, Gregory G. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (16) :1565-1573
[52]   Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility [J].
Robson, Andrew ;
Makova, Svetlana Z. ;
Barish, Syndi ;
Zaidi, Samir ;
Mehta, Sameet ;
Drozd, Jeffrey ;
Jin, Sheng Chih ;
Gelb, Bruce D. ;
Seidman, Christine E. ;
Chung, Wendy K. ;
Lifton, Richard P. ;
Khokha, Mustafa K. ;
Brueckner, Martina .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (28) :14049-14054
[53]   Histone phosphorylation A chromatin modification involved in diverse nuclear events [J].
Rossetto, Dorine ;
Avvakumov, Nikita ;
Cote, Jacques .
EPIGENETICS, 2012, 7 (10) :1098-1108
[54]   Repurposing From Oncology to Cardiology: Low-Dose 5-Azacytidine Attenuates Pathological Cardiac Remodeling in Response to Pressure Overload Injury [J].
Russell-Hallinan, Adam ;
Neary, Roisin ;
Watson, Chris J. ;
Baugh, John A. .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2021, 26 (04) :375-385
[55]   Histone sumoylation and chromatin dynamics [J].
Ryu, Hong-Yeoul ;
Hochstrasser, Mark .
NUCLEIC ACIDS RESEARCH, 2021, 49 (11) :6043-6052
[56]   SUMO and SUMOylation Pathway a the Forefront of Host Immune Response [J].
Sajeev, T. K. ;
Joshi, Garima ;
Arya, Pooja ;
Mahajan, Vibhuti ;
Chaturvedi, Akanksha ;
Mishra, Ram Kumar .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
[57]   Natriuretic peptide pathways in heart failure: further therapeutic possibilities [J].
Sangaralingham, S. Jeson ;
Kuhn, Michaela ;
Cannone, Valentina ;
Chen, Horng H. ;
Burnett, John C., Jr. .
CARDIOVASCULAR RESEARCH, 2023, 118 (18) :3416-3433
[58]   Global Public Health Burden of Heart Failure: An Updated Review [J].
Shahim, Bahira ;
Kapelios, Chris J. ;
Savarese, Gianluigi ;
Lund, Lars H. .
CARDIAC FAILURE REVIEW, 2023, 9
[59]   Upregulation of Hsp27 via further inhibition of histone H2A ubiquitination confers protection against myocardial ischemia/reperfusion injury by promoting glycolysis and enhancing mitochondrial function [J].
Shi, Pilong ;
Wu, Jiawei ;
Li, Minghui ;
Cao, Yonggang ;
Wu, Jiabi ;
Ren, Ping ;
Liu, Kai ;
Zhou, Jiajun ;
Sha, Yuetong ;
Zhang, Qianhui ;
Sun, Hongli .
CELL DEATH DISCOVERY, 2023, 9 (01)
[60]   Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats [J].
Stenzig, Justus ;
Schneeberger, Yvonne ;
Loeser, Alexandra ;
Peters, Barbara S. ;
Schaefer, Andreas ;
Zhao, Rong-Rong ;
Ng, Shi Ling ;
Hoeppner, Grit ;
Geertz, Birgit ;
Hirt, Marc N. ;
Tan, Wilson ;
Wong, Eleanor ;
Reichenspurner, Hermann ;
Foo, Roger S-Y ;
Eschenhagen, Thomas .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 120 :53-63