Task-Aware Active Learning for Endoscopic Polyp Segmentation

被引:0
作者
Poudel, Pranav [2 ]
Thapa, Shrawan Kumar [2 ]
Regmi, Sudarshan [2 ]
Bhattarai, Binod [1 ,3 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, London, England
[2] NAAMII, Patan, Nepal
[3] Univ Aberdeen, Abeerden, Scotland
来源
DATA ENGINEERING IN MEDICAL IMAGING, DEMI 2024 | 2025年 / 15265卷
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Active Learning; Computer Assisted Interventions; Semantic Segmentation; Surgical AI;
D O I
10.1007/978-3-031-73748-0_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation of polyps is one of the most important research problems in endoscopic image analysis. One of the main obstacles to researching such a problem is the lack of annotated data. Endoscopic annotations necessitate the specialist knowledge of expert endoscopists, and hence the difficulty of organizing arises along with tremendous costs in time and budget. To address this problem, we investigate an active learning paradigm to reduce the requirement of massive labelled training examples by selecting the most discriminative and diverse unlabeled examples for the task taken into consideration. To this end, we propose a task-aware active learning pipeline that considers not only the uncertainty that the current task model exhibits for a given unlabelled example but also the diversity in the composition of the acquired pool in the feature space of the model. We compare our method with the competitive baselines on two publicly available polyps segmentation benchmark datasets. We observe a significant performance improvement over the compared baselines from the experimental results. The code and implementation details are available at: https://github.com/bhattarailab/endo-active-learn
引用
收藏
页码:155 / 165
页数:11
相关论文
共 31 条
[1]  
Agarwal P.K., 2006, Current Trends in Combinatorial and Computational Geometry
[2]   Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method [J].
Ahmad, Omer F. ;
Mori, Yuichi ;
Misawa, Masashi ;
Kudo, Shin-ei ;
Anderson, John T. ;
Bernal, Jorge ;
Berzin, Tyler M. ;
Bisschops, Raf ;
Byrne, Michael F. ;
Chen, Peng-Jen ;
East, James E. ;
Eelbode, Tom ;
Elson, Daniel S. ;
Gurudu, Suryakanth R. ;
Histace, Aymeric ;
Karnes, William E. ;
Repici, Alessandro ;
Singh, Rajvinder ;
Valdastri, Pietro ;
Wallace, Michael B. ;
Wang, Pu ;
Stoyanov, Danail ;
Lovat, Laurence B. .
ENDOSCOPY, 2021, 53 (09) :893-901
[3]   Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy ? [J].
Ali, Sharib ;
Dmitrieva, Mariia ;
Ghatwary, Noha ;
Bano, Sophia ;
Polat, Gorkem ;
Temizel, Alptekin ;
Krenzer, Adrian ;
Hekalo, Amar ;
Guo, Yun Bo ;
Matuszewski, Bogdan ;
Gridach, Mourad ;
Voiculescu, Irina ;
Yoganand, Vishnusai ;
Chavan, Arnav ;
Raj, Aryan ;
Nguyen, Nhan T. ;
Tran, Dat Q. ;
Huynh, Le Duy ;
Boutry, Nicolas ;
Rezvy, Shahadate ;
Chen, Haijian ;
Choi, Yoon Ho ;
Subramanian, Anand ;
Balasubramanian, Velmurugan ;
Gao, Xiaohong W. ;
Hu, Hongyu ;
Liao, Yusheng ;
Stoyanov, Danail ;
Daul, Christian ;
Realdon, Stefano ;
Cannizzaro, Renato ;
Lamarque, Dominique ;
Tran-Nguyen, Terry ;
Bailey, Adam ;
Braden, Barbara ;
East, James E. ;
Rittscher, Jens .
MEDICAL IMAGE ANALYSIS, 2021, 70 (70)
[4]   The power of ensembles for active learning in image classification [J].
Beluch, William H. ;
Genewein, Tim ;
Nuernberger, Andreas ;
Koehler, Jan M. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9368-9377
[5]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[6]   Active label cleaning for improved dataset quality under resource constraints [J].
Bernhardt, Melanie ;
Castro, Daniel C. ;
Tanno, Ryutaro ;
Schwaighofer, Anton ;
Tezcan, Kerem C. ;
Monteiro, Miguel ;
Bannur, Shruthi ;
Lungren, Matthew ;
Nori, Aditya ;
Glocker, Ben ;
Alvarez-Valle, Javier ;
Oktay, Ozan .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy [J].
Brandao, Patrick ;
Mazomenos, Evangelos ;
Ciuti, Gastone ;
Calio, Renato ;
Bianchi, Federico ;
Menciassi, Arianna ;
Dario, Paolo ;
Koulaouzidis, Anastasios ;
Arezzo, Alberto ;
Stoyanov, Danail .
MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
[8]   A survey on active learning and human-in-the-loop deep learning for medical image analysis [J].
Budd, Samuel ;
Robinson, Emma C. ;
Kainz, Bernhard .
MEDICAL IMAGE ANALYSIS, 2021, 71
[9]   Sequential Graph Convolutional Network for Active Learning [J].
Caramalau, Razvan ;
Bhattarai, Binod ;
Kim, Tae-Kyun .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9578-9587
[10]  
Cardoso J., 2020, LNCS, V12446, DOI 10.1007978-3-030-61166-8