Translation lengths in crossing and contact graphs of quasi-median graphs
被引:0
|
作者:
Genevois, Anthony
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, FranceUniv Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, France
Genevois, Anthony
[1
]
机构:
[1] Univ Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, France
Given a quasi-median graph X, the crossing graph AX and the contact graph FX are natural hyperbolic models of X. In this article, we show that the asymptotic translation length in AX or FX of an isometry of X is always rational. Moreover, if X is hyperbolic, these rational numbers can be written with denominators bounded above uniformly; this is not true in full generality. Finally, we show that, if the quasi-median graph X is constructible in some sense, then there exists an algorithm computing the translation length of every computable isometry. Our results encompass contact graphs in CAT(0) cube complexes and extension graphs of right-angled Artin groups.
机构:
Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Chen, Guantao
Chen, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Sci & Engn, Coll Sci, Wuhan 430073, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Chen, Yuan
Gao, Shuhong
论文数: 0引用数: 0
h-index: 0
机构:
Clemson Univ, Dept Math Sci, Clemson, SC 29634 USAGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
Gao, Shuhong
Hu, Zhiquan
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R ChinaGeorgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA