Translation lengths in crossing and contact graphs of quasi-median graphs
被引:0
|
作者:
Genevois, Anthony
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, FranceUniv Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, France
Genevois, Anthony
[1
]
机构:
[1] Univ Montpellier, Inst Math Alexander Grothendieck, Pl Eugene Bataillon, F-34090 Montpellier, France
Given a quasi-median graph X, the crossing graph AX and the contact graph FX are natural hyperbolic models of X. In this article, we show that the asymptotic translation length in AX or FX of an isometry of X is always rational. Moreover, if X is hyperbolic, these rational numbers can be written with denominators bounded above uniformly; this is not true in full generality. Finally, we show that, if the quasi-median graph X is constructible in some sense, then there exists an algorithm computing the translation length of every computable isometry. Our results encompass contact graphs in CAT(0) cube complexes and extension graphs of right-angled Artin groups.
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor 2000, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Klavzar, Sandi
Kovse, Matjaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Maribor 2000, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia