Impact of Heat Treatment on the Microstructure and Properties of Ti-Al Composite Coatings with Formation of a TiAl3 Intermetallic Phase

被引:0
作者
Rutkowska-Gorczyca, Malgorzata [1 ]
Wisniewski, Marcin [1 ]
Dziubek, Mateusz [1 ]
Kowalewski, Piotr [1 ]
Abdulina, Saule [2 ]
Winnicki, Marcin [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Mech Engn, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] D Serikbayev East Kazakhstan Tech Univ, Dept Met & Mineral Proc, 69 Protozanov St, Ust Kamenogorsk, Kazakhstan
来源
COATINGS | 2024年 / 14卷 / 12期
关键词
heat treatment; Ti-Al composite coatings; intermetallic phase; COLD; ALLOY;
D O I
10.3390/coatings14121497
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In response to environmental issues and the intensive degradation of parts, the civil and military aviation industries have shown increasing interest in developing more sustainable materials and technologies; therefore, this paper proposes the regeneration of structural components by cold spraying. As part of this research, Ti-Al composite powder was deposited by low-pressure cold spraying and then heat treated to obtain a Ti-Al3 intermetallic phase. The Ti-Al3 intermetallic phase is characterized by high hardness and abrasion resistance. The research has shown that at appropriately selected heat treatment parameters, this phase is formed in a certain area of the Ti-Al coating. The presence and morphology of the Ti-Al3 phase were confirmed by X-ray, scanning, and transmission electron microscopy. It has been found that the presence of this phase increases the hardness of coatings and reduces the friction coefficient.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] Raoelison R.N., Verdy C., Liao H., Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications, Mater. Design, 133, pp. 266-287, (2017)
  • [2] Rahito, Wahab D., Azman A., Additive Manufacturing for Repair and Restoration in Remanufacturing: An Overview from Object Design and Systems Perspectives, Processes, 7, (2019)
  • [3] Papyrin A., Kosarev V., Klinkov S., Alkimov A., Fomin I.V., Cold Spray Technology, (2007)
  • [4] Winnicki M., Malachowska A., Rutkowska-Gorczyca M., Ambroziak A., Przyczepność powłok miedzi na podłożu aluminiowym naniesionych metodą LPCS, Weld. Technol. Rev, 86, (2014)
  • [5] Novoselova T., Celotto S., Morgan R., Fox P., Neill W., Formation of TiAl intermetallics by heat treatment of coldsprayed precursor deposits, J. Alloys Compd, 436, pp. 69-77, (2007)
  • [6] Sobon D., Zorawski W., Makrenek M., Zastosowanie powłok tytanowych uzyskanych w technologiach przyrostowych z wykorzystaniem procesu natryskiwania zimnym gazem, Mechanik, 12, pp. 1147-1149, (2018)
  • [7] Uhlmann E., Kersting R., Klein T.B., Cruz M.F., Borille A.V., Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 35, pp. 55-60, (2015)
  • [8] Zhao W., Wang S., Han Z., He N., Cutting Performance Evaluation of End Mills for Titanium Aircraft Components, Procedia CIRP, 35, pp. 1-7, (2015)
  • [9] Singh P., Pungotra H., Kalsi N.S., On the characteristics of titanium alloys for the aircraft applications, Mater. Today Proc, 4, pp. 8971-8982, (2017)
  • [10] Dudek L., Hryniewicz T., Rokosz K., Zastosowanie tytanu i wybranych stopów tytanu w lotnictwie, Autobusy: Technika, Eksploatacja, Systemy Transportowe, pp. 62-66, (2016)