The PRIMED Consortium: Reducing disparities in polygenic risk assessment

被引:0
作者
Kullo, Iftikhar J. [1 ]
Conomos, Matthew P. [2 ]
Nelson, Sarah C. [2 ]
Adebamowo, Sally N. [3 ]
Choudhury, Ananyo [4 ]
Conti, David [5 ]
Fullerton, Stephanie M. [6 ]
Gogarten, Stephanie M. [2 ]
Heavner, Ben [2 ]
Hornsby, Whitney E. [7 ]
Kenny, Eimear E. [8 ]
Khan, Alyna [2 ]
Khera, Amit V. [7 ]
Li, Yun [9 ]
Martin, Iman [10 ]
Mercader, Josep M. [11 ,12 ]
Ng, Maggie [13 ]
Raffield, Laura M. [9 ]
Reiner, Alex [14 ]
Rowley, Robb [10 ]
Schaid, Daniel [15 ]
Stilp, Adrienne [2 ]
Wiley, Ken [10 ]
Wilson, Riley [10 ]
Witte, John S. [16 ]
Natarajan, Pradeep [7 ,11 ,12 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[2] Univ Washington, Dept Biostat, Seattle, WA USA
[3] Univ Maryland, Dept Epidemiol & Publ Hlth, Baltimore, MD USA
[4] Univ Witwatersrand, Sydney Brenner Inst Mol Biosci, Johannesburg, South Africa
[5] Univ Southern Calif, Dept Populat & Publ Hlth Sci, Los Angeles, CA USA
[6] Univ Washington, Sch Med, Dept Bioeth & Humanities, Seattle, WA USA
[7] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA USA
[8] Icahn Sch Med Mt Sinai, Inst Genom Hlth, New York, NY USA
[9] Univ North Carolina Chapel Hill, Dept Genet, Chapel Hill, NC USA
[10] Natl Human Genome Res Inst, NIH, Baltimore, MD USA
[11] Broad Inst Harvard & MIT, Programs Metab, Cambridge, MA USA
[12] Broad Inst Harvard & MIT, Program Med & Populat Genet, Cambridge, MA USA
[13] Vanderbilt Univ, Med Ctr, Div Genet Med, Nashville, TN USA
[14] Fred Hutchinson Canc Ctr, Dept Epidemiol, Seattle, WA USA
[15] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN USA
[16] Stanford Univ, Dept Epidemiol & Populat Hlth, Stanford, CA USA
关键词
ANCESTRY; SCORES; PREDICTION; HEALTH; HEART; RACE;
D O I
10.1016/j.ajhg.2024.10.010
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
By improving disease risk prediction, polygenic risk scores (PRSs) could have a significant impact on health promotion and disease prevention. Due to the historical oversampling of populations with European ancestry for genome-wide association studies, PRSs perform less well in other, understudied populations, leading to concerns that clinical use in their current forms could widen health care disparities. The PRIMED Consortium was established to develop methods to improve the performance of PRSs in global populations and individuals of diverse genetic ancestry. To this end, PRIMED is aggregating and harmonizing multiple phenotype and genotype datasets on AnVIL, an interoperable secure cloud-based platform, to perform individual- and summary-level analyses using population and statistical genetics approaches. Study sites, the coordinating center, and representatives from the NIH work alongside other NHGRI and global consortia to achieve these goals. PRIMED is also evaluating ethical and social implications of PRS implementation and investigating the joint modeling of social determinants of health and PRS in computing disease risk. The phenotypes of interest are primarily cardiometabolic diseases and cancer, the leading causes of death and disability worldwide. Early deliverables of the consortium include methods for data sharing on AnVIL, development of a common data model to harmonize phenotype and genotype data from cohort studies as well as electronic health records, adaptation of recent guidelines for population descriptors to global cohorts, and sharing of PRS methods/tools. As a multisite collaboration, PRIMED aims to foster equity in the development and use of polygenic risk assessment.
引用
收藏
页码:2594 / 2606
页数:13
相关论文
共 73 条
  • [1] The clinical application of polygenic risk scores: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG)
    Abu-El-Haija, Aya
    V. Reddi, Honey
    Wand, Hannah
    Rose, Nancy C.
    Mori, Mari
    Qian, Emily
    Murray, Michael F.
    [J]. GENETICS IN MEDICINE, 2023, 25 (05)
  • [2] Fast model-based estimation of ancestry in unrelated individuals
    Alexander, David H.
    Novembre, John
    Lange, Kenneth
    [J]. GENOME RESEARCH, 2009, 19 (09) : 1655 - 1664
  • [3] The "All of Us" Research Program
    Denny J.C.
    Rutter J.L.
    Goldstein D.B.
    Philippakis A.
    Smoller J.W.
    Jenkins G.
    Dishman E.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (07) : 668 - 676
  • [4] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [5] Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements
    Amariuta, Tiffany
    Ishigaki, Kazuyoshi
    Sugishita, Hiroki
    Ohta, Tazro
    Koido, Masaru
    Dey, Kushal K.
    Matsuda, Koichi
    Murakami, Yoshinori
    Price, Alkes L.
    Kawakami, Eiryo
    Terao, Chikashi
    Raychaudhuri, Soumya
    [J]. NATURE GENETICS, 2020, 52 (12) : 1346 - 1354
  • [6] Fast, accurate local ancestry inference with FLARE
    Browning, Sharon R.
    Waples, Ryan K.
    Browning, Brian L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (02) : 326 - 335
  • [7] iCARE: An R package to build, validate and apply absolute risk models
    Choudhury, Parichoy Pal
    Maas, Paige
    Wilcox, Amber
    Wheeler, William
    Brook, Mark
    Check, David
    Garcia-Closas, Montserrat
    Chatterjee, Nilanjan
    [J]. PLOS ONE, 2020, 15 (02):
  • [8] Race and Ethnicity Stratification for Polygenic Risk Score Analyses May Mask Disparities in Hispanics
    Clarke, Shoa L.
    Huang, Rose D. L.
    Hilliard, Austin T.
    Tcheandjieu, Catherine
    Lynch, Julie
    Damrauer, Scott M.
    Chang, Kyong-Mi
    Tsao, Philip S.
    Assimes, Themistocles L.
    [J]. CIRCULATION, 2022, 146 (03) : 265 - 267
  • [9] Association and Interaction of Genetics and Area-Level Socioeconomic Factors on the Prevalence of Type 2 Diabetes and Obesity
    Cromer, Sara J.
    Lakhani, Chirag M.
    Mercader, Josep M.
    Majarian, Timothy D.
    Schroeder, Philip
    Cole, Joanne B.
    Florez, Jose C.
    Patel, Chirag J.
    Manning, Alisa K.
    Burnett-Bowie, Sherri-Ann M.
    Merino, Jordi
    Udler, Miriam S.
    [J]. DIABETES CARE, 2023, 46 (05) : 944 - +
  • [10] Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups
    Dikilitas, Ozan
    Schaid, Daniel J.
    Kosel, Matthew L.
    Carroll, Robert J.
    Chute, Christopher G.
    Denny, Joshua A.
    Fedotov, Alex
    Feng, QiPing
    Hakonarson, Hakon
    Jarvik, Gail P.
    Lee, Ming Ta Michael
    Pacheco, Jennifer A.
    Rowley, Robb
    Sleiman, Patrick M.
    Stein, C. Michael
    Sturm, Amy C.
    Wei, Wei-Qi
    Wiesner, Georgia L.
    Williams, Marc S.
    Zhang, Yanfei
    Manolio, Teri A.
    Kullo, Iftikhar J.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 106 (05) : 707 - 716