Similarity calculation model between patients with Chinese electronic medical records based on multi-view hierarchical learning network

被引:0
作者
Wang, Huina [1 ]
Li, Jianqiang [1 ]
Liu, Bo [2 ]
Li, Jinshu [1 ]
Long, Junqi [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[2] Massey Univ, Sch Math & Computat Sci, Auckland, New Zealand
来源
2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Deep learning; Electronic medical record; Patient similarity;
D O I
10.1109/COMPSAC61105.2024.00345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inherent sparsity of electronic medical record (EMR) poses difficulties for the learning of patient similarity. Graph-based modeling methods can infer missing values by learning complex relations among medical facts, which are becoming the mainstream options for patient similarity analysis. However, existing graph-based solutions mainly focus on general patterns among patients and overlook local differences, potentially losing semantic information on patient similarity. Additionally, in real medical situations, entities related to symptoms or treatment types often involve multiple diseases, which provide erroneous signals in similarity assessment. Therefore, this paper proposes a novel deep learning method called Multi-view Hierarchical Learning Network (MHLN) for patient similarity measurement. This method extracts dependency information between entities from both local and global perspectives. Additionally, it assigns different importance levels to different types of medical entities, enabling the learning of dependency features between entity representations through local and global encoders to generate representative embeddings for similarity computation. Finally, we evaluate MHLN on real-world Chinese EMR data, and the results demonstrate the effectiveness of MHLN compared to related work.
引用
收藏
页码:2153 / 2158
页数:6
相关论文
共 24 条
[1]   Information technology for healthcare transformation [J].
Bigus, J. P. ;
Campbell, M. ;
Carmeli, B. ;
Cefkin, M. ;
Chang, H. ;
Chen-Ritzo, C. -H. ;
Cody, W. F. ;
Ebadollahi, S. ;
Evfimievski, A. ;
Farkash, A. ;
Glissmann, S. ;
Gotz, D. ;
Grandison, T. W. A. ;
Gruhl, D. ;
Haas, P. J. ;
Hsiao, M. J. H. ;
Hsueh, P. -Y. S. ;
Hu, J. ;
Jasinski, J. M. ;
Kaufman, J. H. ;
Kieliszewski, C. A. ;
Kohn, M. S. ;
Knoop, S. E. ;
Maglio, P. P. ;
Mak, R. L. ;
Nelken, H. ;
Neti, C. ;
Neuvirth, H. ;
Pan, Y. ;
Peres, Y. ;
Ramakrishnan, S. ;
Rosen-Zvi, M. ;
Renly, S. ;
Selinger, P. ;
Shabo, A. ;
Sorrentino, R. K. ;
Sun, J. ;
Syeda-Mahmood, T. ;
Tan, W. -C. ;
Tao, Y. Y. Y. ;
Yaesoubi, R. ;
Zhu, X. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2011, 55 (05)
[2]  
Che C., 2017, P 2017 SIAM INT C DA, P198, DOI DOI 10.1137/1.9781611974973.23
[3]  
Cheng Y., 2016, P 2016 SIAM INT C DA, P432, DOI [DOI 10.1137/1.9781611974348.49, 10.1137/1.9781611974348.49]
[4]  
Choi E, 2017, Arxiv, DOI arXiv:1602.03686
[5]   A method for inferring medical diagnoses from patient similarities [J].
Gottlieb, Assaf ;
Stein, Gideon Y. ;
Ruppin, Eytan ;
Altman, Russ B. ;
Sharan, Roded .
BMC MEDICINE, 2013, 11
[6]  
Hakonsen Sasja Jul, 2018, JBI Database System Rev Implement Rep, V16, P117, DOI 10.11124/JBISRIR-2017-003386
[7]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[8]   Personalized Mortality Prediction Driven by Electronic Medical Data and a Patient Similarity Metric [J].
Lee, Joon ;
Maslove, David M. ;
Dubin, Joel A. .
PLOS ONE, 2015, 10 (05)
[9]  
Li Jiyun, 2021, 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT), P807, DOI 10.1109/CECIT53797.2021.00146
[10]   Identification of type 2 diabetes subgroups through topological analysis of patient similarity [J].
Li, Li ;
Cheng, Wei-Yi ;
Glicksberg, Benjamin S. ;
Gottesman, Omri ;
Tamler, Ronald ;
Chen, Rong ;
Bottinger, Erwin P. ;
Dudley, Joel T. .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (311)