Enhancement Effect of Low-Frequency Raman Modes in Graphene Nanoscrolls

被引:0
作者
Yang, Shiqi [1 ]
Han, Xu [2 ]
Qin, Yang [3 ,4 ]
Yan, Jiahao [2 ]
Guo, Zihao [2 ]
Yang, Yehua [5 ]
Xue, Tongtong [1 ]
Wang, Jiakai [1 ]
Zhao, Jinghan [1 ]
Shi, Xinyu [2 ]
Lei, Ming [3 ,4 ]
Zhang, Jun [6 ]
Zhang, Qinghua [7 ]
Lin, Miao-Ling [6 ]
Liu, Liwei [2 ]
Tan, Ping-Heng [6 ]
Liu, Xia [2 ]
Dai, Yunyun [1 ,2 ]
Wang, Yeliang [1 ,2 ,8 ]
Huang, Yuan [1 ,2 ,8 ]
机构
[1] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Integrated Circuits & Elect, MIIT Key Lab Low Dimens Quantum Struct & Devices, Beijing 100081, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Integrated Circuits, Beijing 100876, Peoples R China
[5] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
[6] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[7] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[8] BIT Chongqing Inst Microelect & Microsyst, Chongqing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene nanoscrolls; low-frequency Raman modes; interlayer coupling; annealing; Raman spectroscopy; MULTILAYER GRAPHENE; CARBON NANOSCROLLS; SPECTROSCOPY; INTERLAYER; PHONON; FABRICATION; SCATTERING; MONOLAYER; INTERFACE;
D O I
10.1021/acsami.4c22050
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene nanoscrolls (GNSs) are unique structures with interlayer coupling modes distinct from those in graphene and carbon nanotubes, exhibiting potential physical properties yet to be explored. Here we investigated the low-frequency Raman modes in GNSs formed from 1 to 3 layer graphene (1-3LG). The results of the Raman spectroscopy show that both shear (C) and layer breathing (LB) modes have appeared in monolayer graphene nanoscrolls (1L-GNSs), although these modes never exist in the flat 1LG. Remarkably, both 2L- and 3L-GNSs exhibited multiple low-frequency modes linked to other layer numbers, revealing the emergence of additional interlayer coupling. Annealing significantly enhanced low-frequency Raman signals and introduced additional modes, with the C21 mode intensity increasing nearly 3-fold and LBM61 intensity rising 16-fold. Transmission electron microscopy (TEM) imaging showed reduced similar to 0.3 & Aring; interlayer spacing after annealing, indicating stronger interlayer coupling. This work provides important scientific evidence for understanding the interlayer coupling in GNSs.
引用
收藏
页码:14415 / 14424
页数:10
相关论文
共 60 条
  • [1] Schaibley J.R., Yu H., Clark G., Rivera P., Ross J.S., Seyler K.L., Yao W., Xu X., Valleytronics in 2D materials, Nat. Rev. Mater., 1, (2016)
  • [2] Ogletree D.F., Schuck P.J., Weber-Bargioni A.F., Borys N.J., Aloni S., Bao W., Barja S., Lee J., Melli M., Munechika K., Revealing Optical Properties of Reduced-Dimensionality Materials at Relevant Length Scales, Adv. Mater., 27, 38, pp. 5693-5719, (2015)
  • [3] Yang M.-Q., Zhang N., Xu Y.-J., Synthesis of Fullerene-, Carbon Nanotube-, and Graphene-TiO<sub>2</sub> Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study, ACS Appl. Mater. Interfaces, 5, 3, pp. 1156-1164, (2013)
  • [4] Ni J., Li Y., Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage, Adv. Energy Mater., 6, 17, (2016)
  • [5] Kasbe P.S., Bosch J., Bu J.Y., Dellacorte C., Xu W.A., Scalable Generation of Hybrid Graphene Nanoscrolls for High-Performance Solid Lubricants, Tribol. Lett., 72, 1, (2024)
  • [6] Mao L.B., Xiao Y., Liu H., Zhang X.H., Wang S.F., Huang W.H., Chen M.M., Water-Stable CsPbBr<sub>3</sub>/Reduced Graphene Oxide Nanoscrolls for High-Performance Photoelectrochemical Sensing, Adv. Funct. Mater., 33, 20, (2023)
  • [7] Zhao B., Wan Z., Liu Y., Xu J., Yang X., Shen D., Zhang Z., Guo C., Qian Q., Li J., High-order superlattices by rolling up van der Waals heterostructures, Nature, 591, 7850, pp. 385-390, (2021)
  • [8] Cui X., Kong Z., Gao E., Huang D., Hao Y., Shen H., Di C.-A., Xu Z., Zheng J., Zhu D., Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol, Nat. Commun., 9, 1, (2018)
  • [9] Solis D.A., Borges D.D., Woellner C.F., Galvao D.S., Structural and thermal stability of graphyne and graphdiyne nanoscroll structures, ACS Appl. Mater. Interfaces, 11, 3, pp. 2670-2676, (2018)
  • [10] Slota M., Keerthi A., Myers W.K., Tretyakov E., Baumgarten M., Ardavan A., Sadeghi H., Lambert C.J., Narita A., Mullen K., Magnetic edge states and coherent manipulation of graphene nanoribbons, Nature, 557, 7707, pp. 691-695, (2018)