A Global Meta-Analysis of Land Use Change on Soil Mineral-Associated and Particulate Organic Carbon

被引:1
|
作者
Zhao, Yuqing [1 ,2 ]
Xu, Yulin [1 ,3 ]
Cha, Xinyu [1 ,2 ]
Zhang, Peng [1 ,2 ]
Li, Yifan [1 ,2 ]
Cai, Andong [4 ]
Zhou, Zhenghu [5 ]
Yang, Gaihe [1 ,2 ]
Han, Xinhui [1 ,2 ]
Ren, Chengjie [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling, Shaanxi, Peoples R China
[2] Res Ctr Recycle Agr Engn & Technol Shaanxi Prov, Yangling, Shaanxi, Peoples R China
[3] China Agr Univ, Key Lab Farming Syst, Minist Agr & Rural Affairs China, Beijing, Peoples R China
[4] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Key Lab Agr Environm, Minist Agr & Rural Affairs, Beijing, Peoples R China
[5] Northeast Forestry Univ, Ctr Ecol Res, Harbin, Peoples R China
关键词
land degradation; land restoration; meta-analysis; mineral-associated organic carbon; particulate organic carbon; soil carbon stability; PHYSICAL FRACTIONS; MATTER; FOREST; AFFORESTATION; DYNAMICS; STOCKS; DECOMPOSITION; EFFICIENCY; CONVERSION; GRASSLAND;
D O I
10.1111/gcb.70111
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Separating soil organic carbon (SOC) into mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) enables accurate prediction of SOC vulnerability to land use change (LUC). Here, we synthesize the responses of soil MAOC and POC to LUC, including land restoration and degradation, from 693 soil observations globally. We observed a large increase in soil MAOC and POC after restoration and a greater decline after degradation, but the magnitude and proportion of these two carbon fractions (fMAOC and fPOC) varied with LUC. POC, in comparison with MAOC, responded more sensitively to LUC, suggesting that POC was more vulnerable to environmental change. Using observed duration relationships, we found that the fraction of POC (fPOC) was higher at the early stage of restoration but lower at the late stage, projecting that soil carbon stability declined after short-term restoration but gradually increased after long-term restoration. Further analysis showed the context-dependent effects of LUC on carbon fractions: in arid or carbon-poor topsoil, restoration greatly increased soil carbon fractions and fPOC, while in humid or carbon-rich topsoil, degradation resulted in large decreases in POC and MAOC, especially POC. Overall, we highlight the importance of soil fractions, particularly POC, in predicting soil carbon stability and suggest that incorporating climate and initial carbon status in models of soil carbon dynamics helps to accurately predict future carbon sink potential.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The effect of land degradation and restoration on particulate and mineral-associated organic carbon
    Zhang, Hong
    Liu, Guihua
    Wu, Junjun
    APPLIED SOIL ECOLOGY, 2024, 196
  • [2] Responses of soil mineral-associated and particulate organic carbon to carbon input: A meta-analysis
    Zhang, Futao
    Chen, Xi
    Yao, Shuihong
    Ye, Yang
    Zhang, Bin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 829
  • [3] Global turnover of soil mineral-associated and particulate organic carbon
    Zhou, Zhenghu
    Ren, Chengjie
    Wang, Chuankuan
    Delgado-Baquerizo, Manuel
    Luo, Yiqi
    Luo, Zhongkui
    Du, Zhenggang
    Zhu, Biao
    Yang, Yuanhe
    Jiao, Shuo
    Zhao, Fazhu
    Cai, Andong
    Yang, Gaihe
    Wei, Gehong
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Changes in soil particulate and mineral-associated organic carbon concentrations under nitrogen addition in China-a meta-analysis
    Qi, Peng
    Chen, Ji
    Wang, Xiaojiao
    Zhang, Renzhi
    Cai, Liqun
    Jiao, Yapeng
    Li, Zhiqiang
    Han, Guojun
    PLANT AND SOIL, 2023, 489 (1-2) : 439 - 452
  • [5] Soil Carbon Accumulation Under Afforestation Is Driven by Contrasting Responses of Particulate and Mineral-Associated Organic Carbon
    Zhai, Deping
    Wang, Yiyue
    Liao, Chang
    Men, Xiuxian
    Wang, Chi
    Cheng, Xiaoli
    GLOBAL BIOGEOCHEMICAL CYCLES, 2024, 38 (10)
  • [6] Temperature effects on cropland soil particulate and mineral-associated organic carbon are governed by agricultural land-use types
    Li, Chengji
    Ran, Min
    Song, Liangying
    Zhang, Yuanyuan
    Li, Aiwen
    Shi, Wenjiao
    Li, Wendan
    Cheng, Jinli
    Zhao, Bin
    Luo, Youlin
    Tao, Qi
    Wu, Yingjie
    Gao, Xuesong
    Wilson, John P.
    Li, Qiquan
    GEODERMA, 2024, 448
  • [7] Distribution, characteristics, and importance of particulate and mineral-associated organic carbon in China forest: a meta-analysis
    Cheng, Hao
    Su, Yangui
    Huang, Zhengyi
    Lin, Sinuo
    Yan, Jingyi
    Wu, Guopeng
    Huang, Gang
    PEERJ, 2025, 13
  • [8] Nitrogen addition-driven soil organic carbon stability depends on the fractions of particulate and mineral-associated organic carbon
    Xu, Yulin
    Zhao, Yuqing
    Cha, Xinyu
    Yang, Wanlin
    Zheng, Mengtao
    Liu, Shuang
    Wang, Yuxiao
    Cai, Andong
    Han, Xinhui
    Yang, Gaihe
    Ren, Chengjie
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2024, 128 (02) : 269 - 281
  • [9] Particulate organic carbon is more sensitive to nitrogen addition than mineral-associated organic carbon: A meta-analysis
    Wu, Junjun
    Zhang, Hong
    Pan, Yontai
    Cheng, Xiaoli
    Zhang, Kerong
    Liu, Guihua
    SOIL & TILLAGE RESEARCH, 2023, 232
  • [10] Forest Conversion Changes Soil Particulate Organic Carbon and Mineral-Associated Organic Carbon via Plant Inputs and Microbial Processes
    Gao, Fei
    Cui, Xiaoyang
    Chen, Mengdie
    Sang, Ying
    FORESTS, 2023, 14 (06):