SHARP GAUSSIAN DECAY FOR THE ONE-DIMENSIONAL HARMONIC OSCILLATOR

被引:0
|
作者
Radchenko, Danylo [1 ]
Ramos, Joao p. g. [2 ]
机构
[1] Univ Lille, Lab Paul Painleve, Lille, France
[2] Ecole Polytech Fed Lausanne, Math Sect, Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
D O I
10.1090/proc/17056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a conjecture by Vemuri [Hermite expansions and Hardy's theorem, arXiv:0801.2234, 2008] by proving sharp bounds on l(kappa) sums of Hermite functions multiplied by an exponentially decaying factor. More explicitly, we prove that, for each y > 0, we have Sigma( n >= 1) |hn(x)|(kappa)e -kappa ny /n(beta)<< y x(1)- kappa/2 -2 beta(e)-kappa x(2 tanh(y)/2),for all x is an element of R sufficiently large. Our proof involves the classical Plancherel-Rotach asymptotic formula for Hermite polynomials and a careful local analysis near the maximum point of such a bound.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Chaotic one-dimensional harmonic oscillator
    Lee, SW
    Lee, HW
    PHYSICAL REVIEW E, 1997, 56 (05): : 5245 - 5250
  • [2] Chaotic one-dimensional harmonic oscillator
    Korea Advanced Inst of Science and, Technology, Taejon, Korea, Republic of
    Phys Rev E., 5 -A pt A (5245-5250):
  • [3] ON THE ONE-DIMENSIONAL HARMONIC OSCILLATOR WITH A SINGULAR PERTURBATION
    Strauss, V. A.
    Winklmeier, M. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2016, 9 (01): : 73 - 91
  • [4] Recurrence relations for one-dimensional harmonic oscillator matrix elements of Gaussian and exponential operators
    Schmidt, P. P.
    MOLECULAR PHYSICS, 2012, 110 (9-10) : 633 - 661
  • [5] One-dimensional Harmonic Oscillator in Quantum Phase Space
    Lu, Jun
    Wang, Xue-Mei
    Wu, Ping
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3750 - 3754
  • [6] The one-dimensional damped forced harmonic oscillator revisited
    Flores-Hidalgo, G.
    Barone, F. A.
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (02) : 377 - 379
  • [7] Quantum contextuality in a one-dimensional quantum harmonic oscillator
    Su, Hong-Yi
    Chen, Jing-Ling
    Wu, Chunfeng
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [8] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [9] EFFECTS OF FINITE BOUNDARIES ON A ONE-DIMENSIONAL HARMONIC OSCILLATOR
    VAWTER, R
    PHYSICAL REVIEW, 1968, 174 (03): : 749 - &
  • [10] Bosons and fermions in a one-dimensional harmonic oscillator potential
    Wybourne, BG
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (03) : 1249 - 1252