Solving Complex Manipulation Tasks with Model-Assisted Model-Free Reinforcement Learning

被引:0
作者
Hu, Jianshu [1 ]
Weng, Paul [1 ]
机构
[1] Shanghai Jiao Tong Univ, UM SJTU Joint Inst, Shanghai, Peoples R China
来源
CONFERENCE ON ROBOT LEARNING, VOL 205 | 2022年 / 205卷
基金
中国国家自然科学基金;
关键词
Reinforcement learning; Data augmentation; Imaginary exploration; Optimistic initialization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel deep reinforcement learning approach for improving the sample efficiency of a model-free actor-critic method by using a learned model to encourage exploration. The basic idea consists in generating imaginary transitions with noisy actions, which can be used to update the critic. To counteract the model bias, we introduce a high initialization for the critic and two filters for the imaginary transitions. Finally, we evaluate our approach with the TD3 algorithm on different robotic tasks and demonstrate that it achieves a better performance with higher sample efficiency than several other model-based and model-free methods.
引用
收藏
页码:1299 / 1308
页数:10
相关论文
共 24 条
[1]  
Akkaya I, 2019, Arxiv, DOI arXiv:1910.07113
[2]  
Andrychowicz M, 2019, Arxiv, DOI arXiv:1808.00177
[3]  
Boedecker, 2017, C ROBOT LEARNING, P195
[4]  
Buckman J, 2019, Arxiv, DOI arXiv:1807.01675
[5]  
Charlesworth H, 2021, Arxiv, DOI arXiv:2009.05104
[6]  
Christiano P, 2016, Arxiv, DOI arXiv:1610.03518
[7]  
Clavera I, 2020, Arxiv, DOI arXiv:2005.08068
[8]  
Deisenroth M., 2011, P 28 INT C MACHINE L, P465
[9]  
Feinberg V, 2018, Arxiv, DOI arXiv:1803.00101
[10]  
Fujimoto S, 2018, Arxiv, DOI [arXiv:1802.09477, 10.48550/arXiv.1802.09477]