Kolmogorov-Arnold networks in nuclear binding energy prediction

被引:0
|
作者
Liu, Hao [1 ]
Lei, Jin [1 ]
Ren, Zhongzhou [1 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevC.111.024316
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This study explores the application of Kolmogorov-Arnold networks (KANs) in predicting nuclear binding energies, leveraging their ability to decompose complex multiparameter systems into simpler univariate functions. By utilizing data from the Atomic Mass Evaluation (AME2020) and incorporating features such as atomic number, neutron number, and shell effects, KANs achieved a significant lower root mean square error (0.26 MeV), surpassing traditional models. The symbolic regression analysis yielded simplified analytical expressions for binding energies, aligning with classical models like the liquid drop model and the Bethe-Weizs & auml;cker formula. These results highlight KANs' potential in enhancing the interpretability and understanding of nuclear phenomena, paving the way for future applications in nuclear physics and beyond.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Classifying IoT Botnet Attacks With Kolmogorov-Arnold Networks: A Comparative Analysis of Architectural Variations
    Do, Phuc Hao
    Le, Tran Duc
    Dinh, Truong Duy
    Pham, Van Dai
    IEEE ACCESS, 2025, 13 : 16072 - 16093
  • [32] Application of ε-entropy theory to Kolmogorov-Arnold representation theorem
    Akashi, S
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 19 - 26
  • [33] Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
    Rigas, Spyros
    Papachristou, Michalis
    Papadopoulos, Theofilos
    Anagnostopoulos, Fotios
    Alexandridis, Georgios
    IEEE ACCESS, 2024, 12 : 176982 - 176998
  • [34] Advancing Real-Estate Forecasting: A Novel Approach Using Kolmogorov-Arnold Networks
    Viktoratos, Iosif
    Tsadiras, Athanasios
    ALGORITHMS, 2025, 18 (02)
  • [35] Scattering-based structural inversion of soft materials via Kolmogorov-Arnold networks
    Tung, Chi-Huan
    Ding, Lijie
    Chang, Ming-Ching
    Huang, Guan-Rong
    Porcar, Lionel
    Wang, Yangyang
    Carrillo, Jan-Michael Y.
    Sumpter, Bobby G.
    Shinohara, Yuya
    Do, Changwoo
    Chen, Wei-Ren
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (07):
  • [36] Kolmogorov-Arnold networks guided whale optimization algorithm for feature selection in medical datasets
    Zheng, Boli
    Chen, Yi
    Wang, Chaofan
    Heidari, Ali Asghar
    Liu, Lei
    Chen, Huiling
    Liang, Guoxi
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [37] KT-Deblur: Kolmogorov-Arnold and Transformer Networks for Remote Sensing Image Deblurring
    Zhu, Baoyu
    Li, Zekun
    Lv, Qunbo
    Tan, Zheng
    Zhang, Kai
    REMOTE SENSING, 2025, 17 (05)
  • [38] Ensemble learning driven Kolmogorov-Arnold Networks-based Lung Cancer classification
    Sait, Abdul Rahaman Wahab
    AlBalawi, Eid
    Nagaraj, Ramprasad
    PLOS ONE, 2024, 19 (12):
  • [39] Exploring the Limitations of Kolmogorov-Arnold Networks in Classification: Insights to Software Training and Hardware Implementation
    Van Duy Trani
    Tran Xuan Hieu Le
    Thi Diem Tran
    Hoai Luan Pham
    Vu Trung Duong Le
    Tuan Hai Vu
    Van Tinh Nguyen
    Nakashima, Yasuhiko
    2024 TWELFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS, CANDARW 2024, 2024, : 110 - 116
  • [40] A novel correlation feature self-assigned Kolmogorov-Arnold Networks for multi-energy load forecasting in integrated energy systems
    Liu, Xiangfei
    Yang, Zhile
    Guo, Yuanjun
    Li, Zheng
    Xu, Xiandong
    ENERGY CONVERSION AND MANAGEMENT, 2025, 325