Kolmogorov-Arnold networks in nuclear binding energy prediction

被引:0
|
作者
Liu, Hao [1 ]
Lei, Jin [1 ]
Ren, Zhongzhou [1 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevC.111.024316
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This study explores the application of Kolmogorov-Arnold networks (KANs) in predicting nuclear binding energies, leveraging their ability to decompose complex multiparameter systems into simpler univariate functions. By utilizing data from the Atomic Mass Evaluation (AME2020) and incorporating features such as atomic number, neutron number, and shell effects, KANs achieved a significant lower root mean square error (0.26 MeV), surpassing traditional models. The symbolic regression analysis yielded simplified analytical expressions for binding energies, aligning with classical models like the liquid drop model and the Bethe-Weizs & auml;cker formula. These results highlight KANs' potential in enhancing the interpretability and understanding of nuclear phenomena, paving the way for future applications in nuclear physics and beyond.
引用
收藏
页数:10
相关论文
共 50 条
  • [22] Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Mohamed, Amir Izzani
    Samsudin, Ahmad Salihin
    Rashid, Muhammad Ikram Mohd
    ENERGY, 2024, 311
  • [23] Detection of Bus Driver Mobile Phone Usage Using Kolmogorov-Arnold Networks
    Hollosi, Janos
    Ballagi, Aron
    Kovacs, Gabor
    Fischer, Szabolcs
    Nagy, Viktor
    COMPUTERS, 2024, 13 (09)
  • [24] Enhancing Low-Light Images with Kolmogorov-Arnold Networks in Transformer Attention
    Brateanu, Alexandru
    Balmez, Raul
    Orhei, Ciprian
    Ancuti, Cosmin
    Ancuti, Codruta
    SENSORS, 2025, 25 (02)
  • [25] CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment
    Abd Elaziz, Mohamed
    Fares, Ibrahim Ahmed
    Aseeri, Ahmad O.
    IEEE ACCESS, 2024, 12 : 134837 - 134851
  • [26] How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification
    Jamali, Ali
    Roy, Swalpa Kumar
    Hong, Danfeng
    Lu, Bing
    Ghamisi, Pedram
    REMOTE SENSING, 2024, 16 (21)
  • [27] Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
    Montanelli, Hadrien
    Yang, Haizhao
    NEURAL NETWORKS, 2020, 129 : 1 - 6
  • [28] Secure IoT sensor networks through advanced anomaly detection with Kolmogorov-Arnold Networks (KANs)
    Mishra, Shreshtha
    Jain, Usha
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2025,
  • [29] KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
    Kundu, Akash
    Sarkar, Aritra
    Sadhu, Abhishek
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [30] ON THE PROBLEM ASKING IF KOLMOGOROV-ARNOLD REPRESENTATION CAN BE SIMPLIFIED
    Akashi, Shigeo
    Iwata, Toyonari
    Tong, Yao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (07) : 1577 - 1582