Kolmogorov-Arnold networks in nuclear binding energy prediction

被引:0
|
作者
Liu, Hao [1 ]
Lei, Jin [1 ]
Ren, Zhongzhou [1 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevC.111.024316
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This study explores the application of Kolmogorov-Arnold networks (KANs) in predicting nuclear binding energies, leveraging their ability to decompose complex multiparameter systems into simpler univariate functions. By utilizing data from the Atomic Mass Evaluation (AME2020) and incorporating features such as atomic number, neutron number, and shell effects, KANs achieved a significant lower root mean square error (0.26 MeV), surpassing traditional models. The symbolic regression analysis yielded simplified analytical expressions for binding energies, aligning with classical models like the liquid drop model and the Bethe-Weizs & auml;cker formula. These results highlight KANs' potential in enhancing the interpretability and understanding of nuclear phenomena, paving the way for future applications in nuclear physics and beyond.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Utilizing the Kolmogorov-Arnold Networks for chiller energy consumption prediction in commercial building
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saealal, Muhammad Salihin
    Saari, Mohd Mawardi
    Ahmad, Abu Zaharin
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [2] Smart home energy prediction framework using temporal Kolmogorov-Arnold transformer
    Lu, Yao
    Vijayananth, Vishalini
    Perumal, Thinagaran
    ENERGY AND BUILDINGS, 2025, 335
  • [3] Kolmogorov-Arnold networks for algorithm design in battery energy storage system applications
    Zequera, Rolando Antonio Gilbert
    Rassolkin, Anton
    Vaimann, Toomas
    Kallaste, Ants
    ENERGY REPORTS, 2025, 13 : 2664 - 2677
  • [4] Kolmogorov-Arnold Networks for Semi-Supervised Impedance Inversion
    Liu, Mingming
    Bossmann, Florian
    Ma, Jianwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [5] An intrusion detection model based on Convolutional Kolmogorov-Arnold Networks
    Wang, Zhen
    Zainal, Anazida
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Hao, Xue
    Han, Shaoyong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [7] The Kolmogorov-Arnold representation theorem revisited
    Schmidt-Hieber, Johannes
    NEURAL NETWORKS, 2021, 137 : 119 - 126
  • [8] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [9] FloodKAN: Integrating Kolmogorov-Arnold Networks for Efficient Flood Extent Extraction
    Wang, Cong
    Zhang, Xiaohan
    Liu, Liwei
    REMOTE SENSING, 2025, 17 (04)
  • [10] How Resilient Are Kolmogorov-Arnold Networks in Classification Tasks? A Robustness Investigation
    Ibrahum, Ahmed Dawod Mohammed
    Shang, Zhengyu
    Hong, Jang-Eui
    APPLIED SCIENCES-BASEL, 2024, 14 (22):