Surface Exciton Polariton in Cesium Lead Halide Perovskites

被引:0
作者
Hao, Jason [1 ]
Owrutsky, Jeffrey [2 ]
Ratchford, Daniel C. [3 ]
Simpkins, Blake [3 ]
Efros, Alexander L. [3 ]
机构
[1] Thomas Jefferson High Sch Sci & Technol, Alexandria, VA 22312 USA
[2] Precise Syst Inc, Patuxent River, MD 20653 USA
[3] US Naval Res Lab, Washington, DC 20375 USA
关键词
SPATIAL-DISPERSION; OPTICAL-PROPERTIES; CRYSTAL; WAVES; FIELD;
D O I
10.1021/acs.chemmater.4c03262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we developed a theory describing surface exciton polaritons (SEPs) that accounts for the spatial dispersion of the dielectric constant connected with exciton momentum. Due to strong coupling between light and bulk excitons in the frequency separation, & hbar;omega LT, between the longitudinal and transverse excitons, the SEP is formed and behaves as partially light and partially matter. The dispersion of the SEP was found through a combined solution of Maxwell's and Thomas-Hopfield's equations. The analytical theory describes SEPs at any bulk exciton/vacuum interface and provides its complete dispersion if one knows & hbar;omega LT, the exciton effective mass, M, and the high-frequency dielectric constant, kappa infinity. The presented theory is in excellent agreement with the only numerical modeling of this problem, which was conducted for SEPs at a ZnO/vacuum interface. Calculations show the spatial dispersion of the dielectric constant leads to rather small broadening of the photon-like quasi-particle and suggest using SEPs for long-range coherence transfer. The theory was used to describe SEP dispersion in CsPbCl3 and CsPbBr3 perovskites.
引用
收藏
页码:2251 / 2257
页数:7
相关论文
共 30 条
  • [1] STRUCTURE OF ELECTROMAGNETIC FIELD IN A SPATIALLY DISPERSIVE MEDIUM
    AGARWAL, GS
    PATTANAY.DN
    WOLF, E
    [J]. PHYSICAL REVIEW LETTERS, 1971, 27 (15) : 1022 - &
  • [2] AlEfros L., 1986, SOV PHYS SEMICOND, V20, P808
  • [3] [Anonymous], 2007, Plasmonics: Fundamentals and Applications
  • [4] Exciton binding energy and effective mass of CsPbCI3: a magneto-optical study
    Baranowski, Michal
    Plochocka, Paulina
    Su, Rui
    Legrand, Laurent
    Barisien, Thierry
    Bernardot, Frederick
    Xiong, Qihura
    Testelin, Christophe
    Chamarro, Maria
    [J]. PHOTONICS RESEARCH, 2020, 8 (10) : A50 - A55
  • [5] Polaritons in van der Waals materials
    Basov, D. N.
    Fogler, M. M.
    Garcia de Abajo, F. J.
    [J]. SCIENCE, 2016, 354 (6309)
  • [6] EXPERIMENTAL-OBSERVATION OF EXCITON SURFACE-POLARITONS ON A POLYMERIZED DIACETYLENE CRYSTAL
    BRILLANTE, A
    POCKRAND, I
    PHILPOTT, MR
    SWALEN, JD
    [J]. CHEMICAL PHYSICS LETTERS, 1978, 57 (03) : 395 - 399
  • [7] Strong Light-Matter Coupling in Lead Halide Perovskite Quantum Dot Solids
    Bujalance, Clara
    Calio, Laura
    Dirin, Dmitry N.
    Tiede, David O.
    Galisteo-Lopez, Juan F.
    Feist, Johannes
    Garcia-Vidal, Francisco J.
    Kovalenko, Maksym V.
    Miguez, Hernan
    [J]. ACS NANO, 2024, 18 (06) : 4922 - 4931
  • [8] Guiding light with surface exciton-polaritons in atomically thin superlattices
    Elrafei, Sara A.
    Raziman, T. V.
    de Vega, Sandra
    de Abajo, F. Javier Garcia
    Curto, Alberto G.
    [J]. NANOPHOTONICS, 2024, 13 (17) : 3101 - 3111
  • [9] Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors
    Epstein, Itai
    Chaves, Andre J.
    Rhodes, Daniel A.
    Frank, Bettina
    Watanabe, Kenji
    Taniguchi, Takashi
    Giessen, Harald
    Hone, James C.
    Peres, Nuno M. R.
    Koppens, Frank H. L.
    [J]. 2D MATERIALS, 2020, 7 (03)
  • [10] GELMONT BL, 1984, SOV PHYS SEMICOND+, V18, P1380