Advancing biosensing through super-resolution fluorescence microscopy

被引:0
作者
Go, Ga-eun [1 ]
Kim, Doory [1 ,2 ,3 ]
机构
[1] Hanyang Univ, Dept Chem, Seoul 04763, South Korea
[2] Hanyang Univ, Res Inst Convergence Basic Sci, Inst Nano Sci & Technol, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Super-resolution fluorescence microscopy; Biosensing; Single-molecule sensitivity; GENETIC-CODE EXPANSION; LIVE-CELL; INTRACELLULAR ORGANELLE; PROTEIN INTERACTIONS; GTPASE ACTIVATION; FORCE MICROSCOPY; RESOLUTION LIMIT; STED NANOSCOPY; LIVING CELLS; DNA-PAINT;
D O I
10.1016/j.bios.2025.117374
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Advancement of super-resolution fluorescence microscopy (SRM) has recently allowed applications to the biosensing by offering significant advantages over conventional methods. Its nanoscale spatial resolution and single- molecule sensitivity allow visualization and quantification of biomolecular targets without the need of signal amplification steps typically required in traditional biosensing methods. Moreover, recent innovations in probe design and imaging protocols have expanded SRM capabilities to enable dynamic biosensing in living cells, revealing molecular processes in their native cellular contexts. In this review, we discuss these applications of various SRM techniques to biosensing by highlighting their unique capabilities in providing spatial distribution information and high molecular sensitivity. We address several challenges that must be overcome for the broader application of SRM-based biosensing. Finally, we discuss perspectives on future directions for advancing this field towards practical applications.
引用
收藏
页数:15
相关论文
共 164 条
[1]  
Abbe E., 1904, Gesammelte Abhandlungen
[2]   Super-resolution fluorescence microscopy for investigating bacterial cell biology [J].
Alexander, Carsten ;
Wolters, Manuel ;
Aepfelbacher, Martin .
MOLECULAR MICROBIOLOGY, 2024, 121 (04) :646-658
[3]   Fluorescence fluctuation-based super-resolution microscopy: Basic concepts for an easy start [J].
Alva, Alma ;
Brito-Alarcon, Eduardo ;
Linares, Alejandro ;
Torres-Garcia, Esley ;
Hernandez, Haydee O. ;
Pinto-Camara, Raul ;
Martinez, Damian ;
Hernandez-Herrera, Paul ;
D'Antuono, Rocco ;
Wood, Christopher ;
Guerrero, Adan .
JOURNAL OF MICROSCOPY, 2022, 288 (03) :218-241
[4]   Conformational analysis of single polymer chains in three dimensions by super-resolution fluorescence microscopy [J].
Aoki, Hiroyuki ;
Mori, Kazuki ;
Ito, Shinzaburo .
SOFT MATTER, 2012, 8 (16) :4390-4395
[5]   Nanometer-scale Multiplexed Super-Resolution Imaging with an Economic 3D-DNA-PAINT Microscope [J].
Auer, Alexander ;
Schlichthaerle, Thomas ;
Woehrstein, Johannes B. ;
Schueder, Florian ;
Strauss, Maximilian T. ;
Grabmayr, Heinrich ;
Jungmann, Ralf .
CHEMPHYSCHEM, 2018, 19 (22) :3024-3034
[6]   Coupling chromatin structure and dynamics by live super-resolution imaging [J].
Barth, R. ;
Bystricky, K. ;
Shaban, H. A. .
SCIENCE ADVANCES, 2020, 6 (27)
[7]   Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection [J].
Bates, Mark ;
Dempsey, Graham T. ;
Chen, Kok Hao ;
Zhuang, Xiaowei .
CHEMPHYSCHEM, 2012, 13 (01) :99-107
[8]   SEMORE: SEgmentation and MORphological fingErprinting by machine learning automates super-resolution data analysis [J].
Bender, Steen W. B. ;
Dreisler, Marcus W. ;
Zhang, Min ;
Kaestel-Hansen, Jacob ;
Hatzakis, Nikos S. .
NATURE COMMUNICATIONS, 2024, 15 (01)
[9]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[10]   Stochastic Protein Interactions Monitored by Hundreds of Single-Molecule Plasmonic Biosensors [J].
Beuwer, Michael A. ;
Prins, Menno W. J. ;
Zijlstra, Peter .
NANO LETTERS, 2015, 15 (05) :3507-3511