GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2

被引:0
作者
Wang, Jinhuan [1 ]
Chen, Haomeng [2 ]
Zhuang, Mengdi [1 ]
机构
[1] Liaoning Univ, Sch Math & Stat, Shenyang 110036, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2025年 / 30卷 / 08期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Keller-Segel equations; Parabolic-elliptic type; Cauchy problem; logis- tic source; global existence; ELLIPTIC CHEMOTAXIS SYSTEM; CRITICAL MASS; BLOW-UP; AGGREGATION;
D O I
10.3934/dcdsb.2024191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following parabolic-elliptic chemotaxis system with logistic source in the whole space R2: { u(t) = triangle u - V center dot (u del v) + au - bu(2), x is an element of R-2, t > 0, - triangle v = u - v, x is an element of R-2, t > 0. We prove that the solution of the model with a > 0, b > 0 exists globally for arbitrary initial data u0 E L-1(R-2) boolean AND L-infinity(R-2). It is different from the classical Keller-Segel model in that the existence of the logistic source makes the model lose the mass conservation property. Instead, we give an upper bound on IIuIIL1(R2) for subsequent estimates. This paper mainly explores logistic source and diffusion term to suppress the concentration term, and uses analysis skills to prove the boundedness of the term of II(1+u) log(1+u)IIL1(R-2), thus obtaining global existence of bounded solutions by the Moser iteration. Compared with the classical Keller-Segel model, the existence of a logistic source prevents blow-up that holds in R-2 for any b > 0. This indicates that the logistic source (b > 0) has broken the threshold between diffusion and aggregation in the model such that the solution exists globally for any initial data.
引用
收藏
页码:2806 / 2821
页数:16
相关论文
共 37 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[3]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[4]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[5]   UNIQUENESS FOR KELLER-SEGEL-TYPE CHEMOTAXIS MODELS [J].
Carrillo, Jose Antonio ;
Lisini, Stefano ;
Mainini, Edoardo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) :1319-1338
[6]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[7]  
Childress S., 1984, Lecture Notes in Biomath, V55, P61
[8]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[9]   Optimal critical mass in the two dimensional Keller-Segel model in R2 [J].
Dolbeault, J ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :611-616
[10]   On a Parabolic-Elliptic system with chemotaxis and logistic type growth [J].
Galakhov, Evgeny ;
Salieva, Olga ;
Ignacio Tello, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) :4631-4647