Transformer-Based Dog Behavior Classification With Motion Sensors

被引:0
|
作者
Or, Barak [1 ,2 ]
机构
[1] MetaOr Artificial Intelligence, CEO Off, IL-3349602 Haifa, Israel
[2] Reichman Univ, Google Reichman Tech Sch, IL-4610101 Herzliyya, Israel
关键词
Dogs; Transformers; Motion detection; Sensors; Computational modeling; Data models; Computer architecture; Accelerometer; attention mechanism; deep neural network (DNN); dog activity detection; dog behavior; gyroscope; inertial sensors; long short-term memory (LSTM); machine learning; mode recognition; motion sensors; pet activity detection (PAD); real-time; supervised learning; transformers; NEURAL-NETWORK;
D O I
10.1109/JSEN.2024.3454544
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article deals with classifying dog behavior using motion sensors, leveraging a transformer-based deep neural network (DNN) model. Understanding dog behavior is essential for fostering positive relationships between dogs and humans and ensuring their well-being. Traditional methods often fall short in capturing temporal dependencies and efficiently processing high-dimensional sensor data. Our proposed architecture, inspired by its success in natural language processing (NLP), utilizes the self-attention mechanism of the transformer to effectively identify relevant features across various time scales, making it ideal for real-time applications. The architecture includes only the encoder part with a classifier's head to output probabilities of dog behavior. We used an open-access dataset focusing on seven different dog behavior, captured by motion sensors on top of the dog's back. Through experimentation and optimization, our model demonstrates superior performance with an impressive accuracy rate of 98.5%, outperforming time series DNN models. The model's efficiency is further highlighted by its reduced computational complexity, lower latency, and smaller size, making it well-suited for deployment in resource-constrained environments.
引用
收藏
页码:33816 / 33825
页数:10
相关论文
共 50 条
  • [11] TNPC: Transformer-based network for cloud classification☆
    Zhou, Wei
    Zhao, Yiheng
    Xiao, Yi
    Min, Xuanlin
    Yi, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [12] Transformer-based Neural Network for Electrocardiogram Classification
    Computer Science Department, Faculty of Computers and Information, Suez University, Suez, Egypt
    Intl. J. Adv. Comput. Sci. Appl., 11 (357-363): : 357 - 363
  • [13] BertSRC: transformer-based semantic relation classification
    Yeawon Lee
    Jinseok Son
    Min Song
    BMC Medical Informatics and Decision Making, 22
  • [14] A Transformer-Based Framework for Payload Malware Detection and Classification
    Stein, Kyle
    Mahyari, Arash
    Francia, Guillermo, III
    El-Sheikh, Eman
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0105 - 0111
  • [15] An improved transformer-based concrete crack classification method
    Guanting Ye
    Wei Dai
    Jintai Tao
    Jinsheng Qu
    Lin Zhu
    Qiang Jin
    Scientific Reports, 14
  • [16] TRANSFORMER-BASED DOMAIN ADAPTATION FOR EVENT DATA CLASSIFICATION
    Zhao, Junwei
    Zhang, Shiliang
    Huang, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4673 - 4677
  • [17] Transformer-based Pouranic topic classification in Indian mythology
    Paul, Apurba
    Seal, Srijan
    Das, Dipankar
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (04):
  • [18] Transformer-based temporal sequence learners for arrhythmia classification
    Varghese, Ann
    Kamal, Suraj
    Kurian, James
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (08) : 1993 - 2000
  • [19] PARASITIC EGG DETECTION AND CLASSIFICATION WITH TRANSFORMER-BASED ARCHITECTURES
    Pedraza, Anibal
    Ruiz-Santaquiteria, Jesus
    Deniz, Oscar
    Bueno, Gloria
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4301 - 4305
  • [20] Classification of hyperspectral and LiDAR data by transformer-based enhancement
    Pan, Jiechen
    Shuai, Xing
    Xu, Qing
    Dai, Mofan
    Zhang, Guoping
    Wang, Guo
    REMOTE SENSING LETTERS, 2024, 15 (10) : 1074 - 1084