Transformer-Based Dog Behavior Classification With Motion Sensors

被引:0
|
作者
Or, Barak [1 ,2 ]
机构
[1] MetaOr Artificial Intelligence, CEO Off, IL-3349602 Haifa, Israel
[2] Reichman Univ, Google Reichman Tech Sch, IL-4610101 Herzliyya, Israel
关键词
Dogs; Transformers; Motion detection; Sensors; Computational modeling; Data models; Computer architecture; Accelerometer; attention mechanism; deep neural network (DNN); dog activity detection; dog behavior; gyroscope; inertial sensors; long short-term memory (LSTM); machine learning; mode recognition; motion sensors; pet activity detection (PAD); real-time; supervised learning; transformers; NEURAL-NETWORK;
D O I
10.1109/JSEN.2024.3454544
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article deals with classifying dog behavior using motion sensors, leveraging a transformer-based deep neural network (DNN) model. Understanding dog behavior is essential for fostering positive relationships between dogs and humans and ensuring their well-being. Traditional methods often fall short in capturing temporal dependencies and efficiently processing high-dimensional sensor data. Our proposed architecture, inspired by its success in natural language processing (NLP), utilizes the self-attention mechanism of the transformer to effectively identify relevant features across various time scales, making it ideal for real-time applications. The architecture includes only the encoder part with a classifier's head to output probabilities of dog behavior. We used an open-access dataset focusing on seven different dog behavior, captured by motion sensors on top of the dog's back. Through experimentation and optimization, our model demonstrates superior performance with an impressive accuracy rate of 98.5%, outperforming time series DNN models. The model's efficiency is further highlighted by its reduced computational complexity, lower latency, and smaller size, making it well-suited for deployment in resource-constrained environments.
引用
收藏
页码:33816 / 33825
页数:10
相关论文
共 50 条
  • [1] Transformer-based Bug/Feature Classification
    Ozturk, Ceyhun E.
    Yilmaz, Eyup Halit
    Koksal, Omer
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] EEG Classification with Transformer-Based Models
    Sun, Jiayao
    Xie, Jin
    Zhou, Huihui
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 92 - 93
  • [3] Transformer-Based Point Cloud Classification
    Wu, Xianfeng
    Liu, Xinyi
    Wang, Junfei
    Wu, Xianzu
    Lai, Zhongyuan
    Zhou, Jing
    Liu, Xia
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT I, 2022, 1700 : 218 - 225
  • [4] Transformer-based partner dance motion generation
    Wu, Ying
    Wu, Zizhao
    Ji, Chengtao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [5] Transformer-based Hierarchical Encoder for Document Classification
    Sakhrani, Harsh
    Parekh, Saloni
    Ratadiya, Pratik
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 852 - 858
  • [6] Practical Transformer-based Multilingual Text Classification
    Wang, Cindy
    Banko, Michele
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, NAACL-HLT 2021, 2021, : 121 - 129
  • [7] BertSRC: transformer-based semantic relation classification
    Lee, Yeawon
    Son, Jinseok
    Song, Min
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [8] A transformer-based architecture for fake news classification
    Divyam Mehta
    Aniket Dwivedi
    Arunabha Patra
    M. Anand Kumar
    Social Network Analysis and Mining, 2021, 11
  • [9] Transformer-based Neural Network for Electrocardiogram Classification
    Atiea, Mohammed A.
    Adel, Mark
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 357 - 363
  • [10] A transformer-based architecture for fake news classification
    Mehta, Divyam
    Dwivedi, Aniket
    Patra, Arunabha
    Anand Kumar, M.
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)