Transformer-Based Dog Behavior Classification With Motion Sensors

被引:0
|
作者
Or, Barak [1 ,2 ]
机构
[1] MetaOr Artificial Intelligence, CEO Off, IL-3349602 Haifa, Israel
[2] Reichman Univ, Google Reichman Tech Sch, IL-4610101 Herzliyya, Israel
关键词
Dogs; Transformers; Motion detection; Sensors; Computational modeling; Data models; Computer architecture; Accelerometer; attention mechanism; deep neural network (DNN); dog activity detection; dog behavior; gyroscope; inertial sensors; long short-term memory (LSTM); machine learning; mode recognition; motion sensors; pet activity detection (PAD); real-time; supervised learning; transformers; NEURAL-NETWORK;
D O I
10.1109/JSEN.2024.3454544
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article deals with classifying dog behavior using motion sensors, leveraging a transformer-based deep neural network (DNN) model. Understanding dog behavior is essential for fostering positive relationships between dogs and humans and ensuring their well-being. Traditional methods often fall short in capturing temporal dependencies and efficiently processing high-dimensional sensor data. Our proposed architecture, inspired by its success in natural language processing (NLP), utilizes the self-attention mechanism of the transformer to effectively identify relevant features across various time scales, making it ideal for real-time applications. The architecture includes only the encoder part with a classifier's head to output probabilities of dog behavior. We used an open-access dataset focusing on seven different dog behavior, captured by motion sensors on top of the dog's back. Through experimentation and optimization, our model demonstrates superior performance with an impressive accuracy rate of 98.5%, outperforming time series DNN models. The model's efficiency is further highlighted by its reduced computational complexity, lower latency, and smaller size, making it well-suited for deployment in resource-constrained environments.
引用
收藏
页码:33816 / 33825
页数:10
相关论文
共 50 条
  • [1] Convolutional Transformer-Based Cross Subject Model for SSVEP-Based BCI Classification
    Liu, Jiawei
    Wang, Ruimin
    Yang, Yuankui
    Zong, Yuan
    Leng, Yue
    Zheng, Wenming
    Ge, Sheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6581 - 6593
  • [2] A Transformer-Based Approach for Better Hand Gesture Recognition
    Besrour, Sinda
    Surapaneni, Yogesh
    Mubibya, Gael S.
    Ashkar, Fahim
    Almhana, Jalal
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1135 - 1140
  • [3] Performance Comparison of Transformer-Based Models on Twitter Health Mention Classification
    Khan, Pervaiz Iqbal
    Razzak, Imran
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 1140 - 1149
  • [4] PARASITIC EGG DETECTION AND CLASSIFICATION WITH TRANSFORMER-BASED ARCHITECTURES
    Pedraza, Anibal
    Ruiz-Santaquiteria, Jesus
    Deniz, Oscar
    Bueno, Gloria
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4301 - 4305
  • [5] Transformer-Based Classification of User Queries for Medical Consultancy
    Lyutkin, D. A.
    Pozdnyakov, D. V.
    Soloviev, A. A.
    Zhukov, D. V.
    Malik, M. S. I.
    Ignatov, D. I.
    AUTOMATION AND REMOTE CONTROL, 2024, 85 (03) : 297 - 308
  • [6] Towards a Transformer-Based Pre-trained Model for IoT Traffic Classification
    Bazaluk, Bruna
    Hamdan, Mosab
    Ghaleb, Mustafa
    Gismalla, Mohammed S. M.
    da Silva, Flavio S. Correa
    Batista, Daniel Macedo
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [7] A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification
    Xie, Jin
    Zhang, Jie
    Sun, Jiayao
    Ma, Zheng
    Qin, Liuni
    Li, Guanglin
    Zhou, Huihui
    Zhan, Yang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 2126 - 2136
  • [8] Transformer-Based Spiking Neural Networks for Multimodal Audiovisual Classification
    Guo, Lingyue
    Gao, Zeyu
    Qu, Jinye
    Zheng, Suiwu
    Jiang, Runhao
    Lu, Yanfeng
    Qiao, Hong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (03) : 1077 - 1086
  • [9] BertSent: Transformer-Based Model for Sentiment Analysis of Penta-Class Tweet Classification
    Almufareh, Maram Fahaad
    Jhanjhi, Nz
    Khan, Navid Ali
    Almuayqil, Saleh Naif
    Humayun, Mamoona
    Javed, Danish
    IEEE ACCESS, 2024, 12 : 196803 - 196817
  • [10] Hybrid Swin Transformer-Based Classification of Gaze Target Regions
    Wu, Gongpu
    Wang, Changyuan
    Gao, Lina
    Xue, Jinna
    IEEE ACCESS, 2023, 11 : 132055 - 132067