Facile hydrothermal fabrication of In2O3/Fe2O3 as potential electrode material for supercapacitor

被引:3
作者
Rafeeq, Muhammad [1 ]
Ahmad, Sohail [2 ]
Sami, Abdus [3 ]
Khan, Komal Zaman [1 ]
Haidar, Zeshan [1 ]
Ahmed, Farooq [4 ]
Yasmeen, Ghazala [1 ]
Ahmed, Shakoor [1 ]
Bahajjaj, Aboud Ahmed Awadh [5 ]
机构
[1] Bahauddin Zakariya Univ Multan, Inst Chem Sci, Multan 60800, Pakistan
[2] Guizhou Univ Engn Sci, Sch Mech Engn, Guizhou 551700, Peoples R China
[3] Univ Punjab Lahore, Ctr Excellence Solid State Phys, Lahore, Pakistan
[4] Univ Engn & Technol Lahore, Dept Chem, Lahore, Pakistan
[5] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
关键词
Supercapacitor; Metal oxides; Indium oxide; IRON-OXIDE; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; GRAPHENE; NANOCOMPOSITE; TRANSITION;
D O I
10.1016/j.electacta.2025.145963
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The limited cycle stability and poor electrochemical performance of electrode materials remain significant challenges for energy storage systems such as batteries and supercapacitors. To overcome these limitations, development of nanostructured materials with enhanced specific surface area and electrical conductivity is essential. In present study, a single-step hydrothermal process was used to fabricate an In2O3/Fe2O3 nano- composite for supercapacitor applications. Scanning electron microscopy (SEM) revealed rough hexagonal nanoparticles in prepared material. Cyclic voltammetry (CV) experiments demonstrated a specific capacitance (Csp) of 379.77 F g-1. The nanocomposite exhibited an impressive Csp of 1868.22 F g-1 at a current density (CD) of 2 A g-1, with energy and power densities of 58.29 Wh kg-1 and 474 kW kg-1, respectively, as determined by galvanostatic charge-discharge (GCD) analysis in a three-electrode configuration. In a two-electrode configuration, the material achieved a Csp of 1564.9 F g-1 at a CD of 2 A g-1, along with an energy density of 356.6 Wh kg-1 and a power density of 0.3375 kW kg-1. The smaller semicircle observed in electrochemical impedance spectroscopy (EIS) indicated improved electrical conductivity. The enhanced capacitance of the nanocomposite, attributed to efficient ion transfer and an expanded structure, highlights its potential for surface-dependent electrochemical applications. This study introduces a novel concept for designing advanced electrode materials for supercapacitors.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors [J].
Abdah, Muhammad Amirul Aizat Mohd ;
Azman, Nur Hawa Nabilah ;
Kulandaivalu, Shalini ;
Sulaiman, Yusran .
MATERIALS & DESIGN, 2020, 186 (186)
[2]   Advanced materials and technologies for hybrid supercapacitors for energy storage - A review [J].
Afir, Ahmed ;
Rahman, Sheikh M. H. ;
Azad, Atia Tasfiah ;
Zaini, Juliana ;
Islan, Md Aminul ;
Azad, Abul Kalam .
JOURNAL OF ENERGY STORAGE, 2019, 25
[3]   Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J].
Aldalbahi, Ali ;
Samuel, Edmund ;
Alotaibi, Bander S. ;
El-Hamshary, Hany ;
Yoon, Sam S. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 82 :47-56
[4]   Energy supply, its demand and security issues for developed and emerging economies [J].
Asif, M. ;
Muneer, T. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (07) :1388-1413
[5]   Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High-Performance Supercapacitors [J].
Bastakoti, Bishnu Prasad ;
Oveisi, Hamid ;
Hu, Chi-Chang ;
Wu, Kevin C. -W ;
Suzuki, Norihiro ;
Takai, Kimiko ;
Kamachi, Yuichiro ;
Imura, Masataka ;
Yamauchi, Yusuke .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (07) :1109-1112
[6]   Electrospun nanocomposite fibers from lignin and iron oxide as supercapacitor material [J].
Butnoi, Pichitchai ;
Pangon, Autchara ;
Berger, Ruediger ;
Butt, Hans-Juergen ;
Intasanta, Varol .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 12 :2153-2167
[7]   MOF-derived CuxS double-faced-decorated carbon nanosheets as high-performance and stable counter electrodes for quantum dots solar cells [J].
Chen, Ming ;
Yin, Feifei ;
Du, Zhonglin ;
Sun, Zhe ;
Zou, Xie ;
Bao, Xiaoli ;
Pan, Zhenxiao ;
Tang, Jianguo .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 :22-30
[8]   Energizing Fe2O3-based supercapacitors with tunable surface pseudocapacitance via physical spatial-confining strategy [J].
Cheng, Situo ;
Zhang, Yaxiong ;
Liu, Yupeng ;
Sun, Zhenheng ;
Cui, Peng ;
Zhang, Junli ;
Hua, Xiaohui ;
Su, Qing ;
Fu, Jiecai ;
Xie, Erqing .
CHEMICAL ENGINEERING JOURNAL, 2021, 406
[9]   Hydrogel-polymer electrolytes for electrochemical capacitors: an overview [J].
Choudhury, N. A. ;
Sampath, S. ;
Shukla, A. K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :55-67
[10]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548