Classification of intracranial pressure epochs using a novel machine learning framework

被引:0
作者
Mathur, Rohan [1 ,2 ,3 ]
Yellapantula, Sudha [4 ]
Cheng, Lin [1 ,2 ,3 ,5 ]
Dziedzic, Peter [1 ,2 ]
Potu, Niteesh [1 ,2 ]
Calvillo, Eusebia [1 ,2 ]
Shah, Vishank [1 ,2 ,3 ]
Lefebvre, Austen [1 ,2 ,3 ]
Bosel, Julian [1 ,2 ,3 ,6 ]
Zink, Elizabeth K. [1 ,2 ]
Muehlschlegel, Susanne [1 ,2 ,3 ,5 ]
Suarez, Jose I. [1 ,2 ,3 ,5 ]
机构
[1] Johns Hopkins Univ, Sch Med, Div Neurosci Crit Care, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21218 USA
[4] Med Informat Corp, Houston, TX USA
[5] Johns Hopkins Univ, Sch Med, Dept Neurosurg, Baltimore, MD USA
[6] Univ Hosp Heidelberg, Dept Neurol, Heidelberg, Germany
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
TRAUMATIC BRAIN-INJURY; VENTRICULOSTOMY; HYPERTENSION; MANAGEMENT; CARE;
D O I
10.1038/s41746-025-01612-3
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Patients with acute brain injuries are at risk for life threatening elevated intracranial pressure (ICP). External Ventricular Drains (EVDs) are used to measure and treat ICP, which switch between clamped and draining configurations, with accurate ICP data only available during clamped periods. While traditional guidelines focus on mean ICP values, evolving evidence indicates other waveform features may hold prognostic value. However, current machine learning models using ICP waveforms exclude EVD data due to a lack of digital labels indicating the clamped state, markedly limiting their generalizability. We introduce, detail, and validate CICL (Classification of ICP epochs using a machine Learning framework), a semi-supervised approach to classify ICP segments from EVDs as clamped, draining, or noise. This paves the way for multiple applications, including generalizable ICP crisis prediction, potentially benefiting tens of thousands of patients annually and highlights an innovate methodology to label large high frequency physiological time series datasets.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Features derived from blood pressure and intracranial pressure predict elevated intracranial pressure events in critically ill children
    Ackerman, Kassi
    Mohammed, Akram
    Chinthala, Lokesh
    Davis, Robert L.
    Kamaleswaran, Rishikesan
    Shafi, Nadeem, I
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01):
  • [2] Arlot S, 2019, J MACH LEARN RES, V20
  • [3] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [4] Risk factors and complications of intracranial pressure monitoring with a fiberoptic device
    Bekar, A.
    Dogan, S.
    Abas, F.
    Caner, B.
    Korfali, G.
    Kocaeli, H.
    Yilmazlar, S.
    Korfali, E.
    [J]. JOURNAL OF CLINICAL NEUROSCIENCE, 2009, 16 (02) : 236 - 240
  • [5] Predicting secondary insults after severe traumatic brain injury
    Bonds, Brandon W.
    Yang, Shiming
    Hu, Peter F.
    Kalpakis, Konstantinos
    Stansbury, Lynn G.
    Scalea, Thomas M.
    Stein, Deborah M.
    [J]. JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2015, 79 (01) : 85 - 90
  • [6] Bratton S.L., 2007, J NEUROTRAUM, V24, pS45S54, DOI DOI 10.1089/NEU.2007.9989
  • [7] Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition
    Carney, Nancy
    Totten, Annette M.
    O'Reilly, Cindy
    Ullman, Jamie S.
    Hawryluk, Gregory W. J.
    Bell, Michael J.
    Bratton, Susan L.
    Chesnut, Randall
    Harris, Odette A.
    Kissoon, Niranjan
    Rubiano, Andres M.
    Shutter, Lori
    Tasker, Robert C.
    Vavilala, Monica S.
    Wilberger, Jack
    Wright, David W.
    Ghajar, Jamshid
    [J]. NEUROSURGERY, 2017, 80 (01) : 6 - 15
  • [8] Prediction model for intracranial hypertension demonstrates robust performance during external validation on the CENTER-TBI dataset
    Carra, Giorgia
    Guiza, Fabian
    Depreitere, Bart
    Meyfroidt, Geert
    [J]. INTENSIVE CARE MEDICINE, 2021, 47 (01) : 124 - 126
  • [9] New efficient algorithms for multiple change-point detection with reproducing kernels
    Celisse, A.
    Marot, G.
    Pierre-Jean, M.
    Rigaill, G. J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 200 - 220
  • [10] Coates Adam, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P561, DOI 10.1007/978-3-642-35289-8_30