Enhancing cardiovascular risk prediction: the role of wall viscoelasticity in machine learning models

被引:0
作者
Dinh, Duc-Manh [1 ]
Berfirdu, Belilla Yonas [1 ]
Rhee, Kyehan [1 ]
机构
[1] Myongji Univ, Dept Mech Engn, 116 Myongji ro, Yongin 17058, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Viscoelasticity; machine learning; cardiovascular disease; risk prediction; feature importance; VALIDATION; FUTURE;
D O I
10.1080/10255842.2025.2475479
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study aims to evaluate the significance of wall viscoelasticity in enhancing cardiovascular disease (CVD) risk prediction. We collected data on ten patient features, categorized into demographics (age, gender, blood pressure, smoking history), blood lab data (HDL, LDL, blood glucose levels), and wall mechanics (Peterson's modulus, stiffness parameter, energy dissipation ratio). Outcome variables were classified as low or high CVD risk based on total plaque area computed from carotid ultrasound images. We employed eight machine learning classifiers and conducted a comparative analysis of feature importance. Incorporating mechanical attributes significantly improved predictive accuracies for most machine learning models. The Random Forest Bagging Method (RFBM) showed the best performance, achieving an accuracy of 93.0% and an AUC of 0.98 with all 10 features. Including either elastic or viscous features alongside the conventional features enhanced prediction for most models. For the tree-based bagging models (DTBM and RFBM), including the viscous feature (energy dissipation ratio) alongside conventional features resulted in greater accuracy improvements compared to the elastic features. This study underscores the significant impact of integrating wall viscosity on CVD prediction and highlights the potential for combining both elastic and viscous wall characteristics to achieve more accurate risk assessment.
引用
收藏
页数:12
相关论文
共 48 条
[1]   The Determination of the Plaque Burden on the Carotid Artery With Ultrasound Significantly Improves the Risk Prediction in Middle-Aged Subjects Compared to PROCAM: An Outcome Study [J].
Adams, Ansgar ;
Bojara, Waldemar ;
Romanens, Michel .
CARDIOLOGY RESEARCH, 2020, 11 (04) :233-238
[2]   Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance [J].
Ahsan, Md Manjurul ;
Mahmud, M. A. Parvez ;
Saha, Pritom Kumar ;
Gupta, Kishor Datta ;
Siddique, Zahed .
TECHNOLOGIES, 2021, 9 (03)
[3]   ASSESSMENT OF ARTERIAL DISTENSIBILITY BY AUTOMATIC PULSE-WAVE VELOCITY-MEASUREMENT - VALIDATION AND CLINICAL-APPLICATION STUDIES [J].
ASMAR, R ;
BENETOS, A ;
TOPOUCHIAN, J ;
LAURENT, P ;
PANNIER, B ;
BRISAC, AM ;
TARGET, R ;
LEVY, BI .
HYPERTENSION, 1995, 26 (03) :485-490
[4]   Cardiovascular disease/stroke risk stratification in deep learning framework: a review [J].
Bhagawati, Mrinalini ;
Paul, Sudip ;
Agarwal, Sushant ;
Protogeron, Athanasios ;
Sfikakis, Petros P. ;
Kitas, George D. ;
Khanna, Narendra N. ;
Ruzsa, Zoltan ;
Sharma, Aditya M. ;
Tomazu, Omerzu ;
Turk, Monika ;
Faa, Gavino ;
Tsoulfas, George ;
Laird, John R. ;
Rathore, Vijay ;
Johri, Amer M. ;
Viskovic, Klaudija ;
Kalra, Manudeep ;
Balestrieri, Antonella ;
Nicolaides, Andrew ;
Singh, Inder M. ;
Chaturvedi, Seemant ;
Paraskevas, Kosmas I. ;
Fouda, Mostafa M. ;
Saba, Luca ;
Suri, Jasjit S. .
CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2023, 13 (03) :557-5978
[5]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[6]  
Breiman Leo., 1984, Classification and Regression Trees, P368, DOI [10.1201/9781315139470, DOI 10.1201/9781315139470, 10.1371/journal.pone.0015807, DOI 10.1371/JOURNAL.PONE.0015807, DOI 10.2307/2530946]
[7]   Carotid Plaque Characterization Using Quantitative Shear Wave Elastography: A Pilot Study [J].
Carter, Michelle ;
Hall, Todd ;
Baun, Jim .
JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY, 2022, 38 (03) :257-262
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   Carotid Plaque Vulnerability Assessment Using Ultrasound Elastography and Echogenicity Analysis [J].
Cloutier, Guy ;
Cardinal, Marie-Helene Roy ;
Ju, Yang ;
Giroux, Marie-France ;
Lanthier, Sylvain ;
Soulez, Gilles .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (04) :847-855
[10]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003