A flame-retardant and weakly solvated gel electrolyte for high-performance and high-safety Ah class sodium-ion batteries

被引:3
作者
Xue, Lixing [1 ,2 ]
Pan, Hongyan [1 ,3 ]
Wang, Yuejun [2 ,5 ]
Wang, Zhengyi [4 ]
Wang, Xuhui [3 ]
Lin, Qian [1 ]
Zhang, Kuo [2 ]
Bu, Xiangnan [2 ]
Bai, Maohui [3 ,4 ]
Hong, Bo [3 ,4 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Guiyang 550025, Peoples R China
[2] Cornex New Energy CO LTD, Xiaogan 432000, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China
[4] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[5] Hetao Coll, Bayannur 015000, Peoples R China
关键词
Flame-retardant; Gel electrolyte; Ion aggregates; Contact ion pairs; Sodium-ion batteries;
D O I
10.1016/j.cej.2024.158828
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phosphate-based electrolytes can effectively improve flame retardancy of sodium-ion batteries (SIBs), but there is a problem of incompatibility with carbon based electrodes. Here, a flame-retardant gel electrolyte (FRGE) strategy can solve the above problems simultaneously by adopting perfluorinated electrolyte and high content of phosphate ester, and cross-linked gel polymer matrix. The electrolyte solvation structure is optimized by the electrostatic adsorption action of the gel, which prompts the entry of anions into the first solvation layer, forming more ion aggregates (AGGs) and contact ion pairs (CIPs). The FRGE enhances the interaction between Na-ion and the PF6- anion, promoting the decomposition of the anion at the interface to form a stable dense fluorinated SEI film, while reducing the possibility of phosphate ester co-embedding in the carbon-based anode. Remarkably, the designed 2.4 Ah Na-0.9[Cu0.22Fe0.3Mn0.48]O-2/HC pouch cell incorporating FRGE demonstrates an impressive low-capacity degradation rate of 0.0035 % per cycle over 1000 cycles, attesting to a high energy density of 124.6 Wh kg(-1). The composite gel electrolyte not only enhances flame retardancy but also boosts electrochemical properties, furthering the practical application of SIBs.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Modification of Prussian blue analogues as high-performance cathodes for sodium-ion batteries [J].
Huang, Yifan ;
Mu, Wenning ;
Meng, Junjin ;
Bi, Xiaolong ;
Lei, Xuefei ;
Luo, Shaohua .
CHEMICAL ENGINEERING JOURNAL, 2024, 499
[32]   Towards High-Performance Sodium-Ion Batteries via the Phase Regulation Strategy [J].
Liu, Zhaolu ;
Cao, Yongjie ;
Zhang, Hao ;
Xu, Jie ;
Wang, Nan ;
Zhao, Deqiang ;
Li, Xunlu ;
Liu, Yao ;
Zhang, Junxi .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (02) :1132-1141
[33]   Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries [J].
Xiang, Jingjing ;
Hao, Youchen ;
Gao, Yuting ;
Ji, Lei ;
Wang, Li ;
Sun, Guoxing ;
Tang, Yuxin ;
Zhu, Yaofeng ;
Jiang, Yinzhu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 946
[34]   Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries [J].
Jinkai Wang ;
Daxian Cao ;
Guidong Yang ;
Yaodong Yang ;
Hongkang Wang .
Journal of Solid State Electrochemistry, 2017, 21 :3047-3055
[35]   SbPS4: A novel anode for high-performance sodium-ion batteries [J].
Yang, Miao ;
Sun, Zhonghui ;
Nie, Ping ;
Yu, Haiyue ;
Zhao, Chende ;
Yu, Mengxuan ;
Luo, Zhongzhen ;
Geng, Hongbo ;
Wu, Xinglong .
CHINESE CHEMICAL LETTERS, 2022, 33 (01) :470-474
[36]   Polymer Electrode Materials for High-Performance Lithium/Sodium-Ion Batteries: A Review [J].
Cao, Xiaoyu ;
Liu, Jingbo ;
Zhu, Limin ;
Xie, Lingling .
ENERGY TECHNOLOGY, 2019, 7 (07)
[37]   Challenges and Strategies toward Manganese Hexacyanoferrate for High-Performance Sodium-Ion Batteries [J].
Zhou, Zhiming ;
Qian, Yudan ;
Chen, Xiaomin ;
Chen, Jian ;
Zhou, Xunzhu ;
Kuang, Wenxi ;
Shi, Xiaoyan ;
Wu, Xingqiao ;
Li, Lin ;
Wang, Jiazhao ;
Chou, Shulei .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (39)
[38]   Quinoid Conductive Polymer for High-Performance Lithium- and Sodium-Ion Batteries [J].
Duan, Ruomeng ;
Liu, Zhihong ;
Wu, Zehua ;
Baumgarten, Martin ;
Li, Chen .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :8179-8183
[39]   High-Performance Sodium-Ion Batteries with Graphene: An Overview of Recent Developments and Design [J].
Kumar, Sachin Sharma Ashok ;
Badawi, M. Nujud ;
Liew, J. ;
Prasankumar, Thibeorchews ;
Ramesh, K. ;
Ramesh, S. ;
Ramesh, S. ;
Tiong, S. K. .
CHEMSUSCHEM, 2025, 18 (02)
[40]   A self-buffering structure for application in high-performance sodium-ion batteries [J].
Liu, Zhiming ;
Yue, Chuang ;
Chen, Chaoji ;
Xiang, Juan ;
Hu, Fang ;
Lee, Dongsoo ;
Shin, Donghyeok ;
Sun, Seho ;
Hu, Liangbing ;
Song, Taeseup .
ENERGY STORAGE MATERIALS, 2018, 15 :242-248