A flame-retardant and weakly solvated gel electrolyte for high-performance and high-safety Ah class sodium-ion batteries

被引:3
作者
Xue, Lixing [1 ,2 ]
Pan, Hongyan [1 ,3 ]
Wang, Yuejun [2 ,5 ]
Wang, Zhengyi [4 ]
Wang, Xuhui [3 ]
Lin, Qian [1 ]
Zhang, Kuo [2 ]
Bu, Xiangnan [2 ]
Bai, Maohui [3 ,4 ]
Hong, Bo [3 ,4 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Guiyang 550025, Peoples R China
[2] Cornex New Energy CO LTD, Xiaogan 432000, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China
[4] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[5] Hetao Coll, Bayannur 015000, Peoples R China
关键词
Flame-retardant; Gel electrolyte; Ion aggregates; Contact ion pairs; Sodium-ion batteries;
D O I
10.1016/j.cej.2024.158828
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phosphate-based electrolytes can effectively improve flame retardancy of sodium-ion batteries (SIBs), but there is a problem of incompatibility with carbon based electrodes. Here, a flame-retardant gel electrolyte (FRGE) strategy can solve the above problems simultaneously by adopting perfluorinated electrolyte and high content of phosphate ester, and cross-linked gel polymer matrix. The electrolyte solvation structure is optimized by the electrostatic adsorption action of the gel, which prompts the entry of anions into the first solvation layer, forming more ion aggregates (AGGs) and contact ion pairs (CIPs). The FRGE enhances the interaction between Na-ion and the PF6- anion, promoting the decomposition of the anion at the interface to form a stable dense fluorinated SEI film, while reducing the possibility of phosphate ester co-embedding in the carbon-based anode. Remarkably, the designed 2.4 Ah Na-0.9[Cu0.22Fe0.3Mn0.48]O-2/HC pouch cell incorporating FRGE demonstrates an impressive low-capacity degradation rate of 0.0035 % per cycle over 1000 cycles, attesting to a high energy density of 124.6 Wh kg(-1). The composite gel electrolyte not only enhances flame retardancy but also boosts electrochemical properties, furthering the practical application of SIBs.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries [J].
Zhang, Yuping ;
Zheng, Hongzhi ;
Tong, Xing ;
Zhuo, Hao ;
Yang, Wu ;
Chen, Yuling ;
Shi, Ge ;
Chen, Zehong ;
Zhong, Linxin ;
Peng, Xinwen .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
[22]   A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries [J].
Liao, Can ;
Mu, Xiaowei ;
Han, Longfei ;
Li, Zhirui ;
Zhu, Yulu ;
Lu, Jingyi ;
Wang, Huijuan ;
Song, Lei ;
Kan, Yongchun ;
Hu, Yuan .
ENERGY STORAGE MATERIALS, 2022, 48 :123-132
[23]   High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites [J].
Wang, Yun-Xiao ;
Chou, Shu-Lei ;
Wexler, David ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (31) :9607-9612
[24]   Sodium Vanadium Oxide: A New Material for High-Performance Symmetric Sodium-Ion Batteries [J].
Hartung, Steffen ;
Bucher, Nicolas ;
Nair, Vivek Sahadevan ;
Ling, Cheah Yan ;
Wang, Yuxi ;
Hoster, Harry E. ;
Srinivasan, Madhavi .
CHEMPHYSCHEM, 2014, 15 (10) :2121-2128
[25]   Carbon-coated sodium vanadium phosphate for high-performance sodium-ion batteries [J].
Li, Tao ;
Xiong, Lingyun .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (11) :1142-1147
[26]   Flame-Retardant, Highly Conductive, and Low-Temperature-Resistant Organic Gel Electrolyte for High-Performance All-Solid Supercapacitors [J].
Wang, Jijun ;
Li, Xuelin ;
Yang, Jianbo ;
Sun, Weigang ;
Ban, Qing ;
Gai, Ligang ;
Gong, Yingying ;
Xu, Zhen ;
Liu, Libin .
CHEMSUSCHEM, 2021, 14 (09) :2056-2066
[27]   Engineering Solid Electrolyte Interface at Nano-Scale for High-Performance Hard Carbon in Sodium-Ion Batteries [J].
Ma, Mengying ;
Cai, Haoran ;
Xu, Chenlu ;
Huang, Renzhi ;
Wang, Shurong ;
Pan, Huilin ;
Hu, Yong-Sheng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (25)
[28]   Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries [J].
Wang, Qi ;
Zhang, Rui ;
Sun, Dan ;
Wang, Haiyan ;
Tang, Yougen .
BATTERIES-BASEL, 2024, 10 (10)
[29]   Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries [J].
Wang, Jinkai ;
Cao, Daxian ;
Yang, Guidong ;
Yang, Yaodong ;
Wang, Hongkang .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (10) :3047-3055
[30]   Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries [J].
Liu, Xinyi ;
Cao, Yu ;
Sun, Jie .
ADVANCED ENERGY MATERIALS, 2022, 12 (46)