On the Three-Dimensional Shape of a Crystal

被引:0
作者
Indrei, Emanuel [1 ]
Karakhanyan, Aram [2 ]
机构
[1] Kennesaw State Univ, Dept Math, Marietta, GA 30060 USA
[2] Univ Edinburgh, Sch Math, Peter Tait Guthrie Rd, Edinburgh EH9 3FD, Scotland
基金
英国工程与自然科学研究理事会;
关键词
free energy; crystals; thermodynamics; surface energy; potential energy; convex; first variation; Almgren's problem; isoperimetric; 35Qxx; TRANSITION;
D O I
10.3390/math13040614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to investigate the Almgren problem in R3 under generic conditions on the potential and tension functions which define the free energy. This problem appears in classical thermodynamics when one seeks to understand whether minimizing the free energy with convex potential in the class of sets of finite perimeter under a mass constraint generates a convex minimizer representing a crystal. Our new idea in proving a three-dimensional convexity theorem is to utilize convexity and a stability theorem when the mass is small, as well as a first-variation partial differential equation along with a new maximum principle approach.
引用
收藏
页数:13
相关论文
共 17 条
[1]   ROUGHENING TRANSITION IN THE HE-4 SOLID-SUPERFLUID INTERFACE [J].
AVRON, JE ;
BALFOUR, LS ;
KUPER, CG ;
LANDAU, J ;
LIPSON, SG ;
SCHULMAN, LS .
PHYSICAL REVIEW LETTERS, 1980, 45 (10) :814-817
[2]   EQUILIBRIUM SHAPES OF CRYSTALS IN A GRAVITATIONAL-FIELD - CRYSTALS ON A TABLE [J].
AVRON, JE ;
TAYLOR, JE ;
ZIA, RKP .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :493-522
[3]  
CURIE P., 1885, B SOC FR MINERAL CR, V8, P145, DOI DOI 10.3406/BULMI.1885.1933
[4]  
de Laplace P.S., 1829, Theory of Capillary Attraction. Supplement to Vol. X of Celestial Mechanics (17991825)
[5]  
De Philippis G, 2022, COMMUN ANAL GEOM, V30, P815
[6]   On the Shape of Liquid Drops and Crystals in the Small Mass Regime [J].
Figalli, A. ;
Maggi, F. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) :143-207
[7]   A mass transportation approach to quantitative isoperimetric inequalities [J].
Figalli, A. ;
Maggi, F. ;
Pratelli, A. .
INVENTIONES MATHEMATICAE, 2010, 182 (01) :167-211
[8]  
Finn R., 2012, EQUILIBRIUM CAPILLAR, V284, DOI DOI 10.1007/978-1-4613-8584-4
[9]   The sharp quantitative isoperimetric inequality [J].
Fusco, N. ;
Maggi, F. ;
Pratelli, A. .
ANNALS OF MATHEMATICS, 2008, 168 (03) :941-980
[10]  
GIBBS JW, 1876, T CONNECTICUT ACADEM, V3, P108, DOI DOI 10.2475/AJS.S3-16.96.441