PAAM (Parameter-free Attentional Aggregation Model)

被引:0
作者
Qi, Xuan-Hao [1 ]
Zhi, Min [1 ]
Mi, Zeng [1 ]
Hu, Wei [1 ]
Yin, Yan-Jun [1 ]
Zhang, Yue-Ning [1 ]
Duan, Wen-Tao [1 ]
Lian, Zhe [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Comp Sci & Technol, Hohhot 010022, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VII, ICIC 2024 | 2024年 / 14868卷
关键词
Attention Mechanism; Parameter-free; Local-global Feature Mutual Compensation; Computer Vision; NETWORK;
D O I
10.1007/978-981-97-5600-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The channel attention mechanism and spatial attention mechanism are crucial in enhancing the performance of convolutional neural networks. However, most existing methods focus on developing more intricate attention modules to improve performance, which inevitably increases the number of model parameters. To address the trade-off between performance and parameter count, this paper introduces an efficient Parameter-free Attention Aggregation Model (PAAM) plug-and-play module. The module first creates a Local Feature Enhancement Module (LFEM) using adaptive pooling. Firstly, the local feature enhancement module (LFEM) is constructed through adaptive pooling to enhance the expression of local features; secondly, the local-global feature interaction module (L-GFIM) is used to realize the mutual compensation between local and global features, which effectively extends the coverage of local-global interaction. The experimental results indicate that PAAM outperforms the SOTA model in ImageNet-1K, Cifar-10, and Cifar-100 image classification datasets.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 20 条
[1]  
Chen Y., 2015, CONVOLUTIONAL NEURAL
[2]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861]
[3]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[6]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[7]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[8]   Selective Kernel Networks [J].
Li, Xiang ;
Wang, Wenhai ;
Hu, Xiaolin ;
Yang, Jian .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :510-519
[9]  
Park J, 2018, Arxiv, DOI arXiv:1807.06514
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241