A New Interval Type-2 Fuzzy Logic Variant of the Multiverse Optimizer Algorithm

被引:0
|
作者
Amezquita, Lucio [1 ]
Cortes-Antonio, Prometeo [1 ]
Soria, Jose [1 ]
Castillo, Oscar [1 ]
机构
[1] Tijuana Inst Technol, Tijuana, Mexico
关键词
type-2; multiverse optimizer; fuzzy logic; benchmark; FMVO; convergence; Mamdani; shower; fuzzy inference systems;
D O I
10.1007/978-3-031-67192-0_62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new variant of the Multiverse Optimizer Algorithm (MVO) that can use the advantages of fuzzy logic, by implementing an interval type-2 fuzzy inference system. In this new variant of Fuzzy Multi Verse Optimizer (FMVO), we are testing over 13 benchmark mathematical functions used in MVO tests, this to compare between the original MVO algorithm and the type-1 variant of the same algorithm, where fuzzy logic was used to adjust two main parameters responsible for exploration and exploitation in the algorithm, that were previously adapted in type-1 variants and resulted beneficial to the algorithm, improving convergence and diversity in the obtained solutions of the cases where the algorithm is used. The change to an interval type-2 fuzzy inference system, adjusts the algorithm to perform better in more complex problems, resulting in a more competitive variant of the MVO algorithm. In addition to benchmark mathematical functions, we compare the algorithm with the shower fuzzy controller optimization case. The objective of this work is to introduce a new variant of the algorithm, that takes advantage of type-2 fuzzy logic for both simple and more complex cases of study, to compare the improvement of the algorithm, and then scale to other cases in fuzzy controller design.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 50 条
  • [1] A new variant of Fuzzy K-Nearest Neighbor using Interval Type-2 Fuzzy Logic
    Melin, Patricia
    Ramirez, Eduardo
    Prado-Arechiga, German
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [2] A New Interval Type-2 Fuzzy PRISM Algorithm
    Bartczuk, Lukasz
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [3] HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS
    Mendez, G. M.
    Leduc, L. A.
    CONTROL AND INTELLIGENT SYSTEMS, 2006, 34 (03)
  • [4] Design of Interval Type-2 Fuzzy Logic Controllers for Flocking Algorithm
    Lee, Seung-Mok
    Kim, Jong-Hwan
    Myung, Hyun
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2594 - 2599
  • [5] Hybrid learning algorithm for interval type-2 fuzzy logic systems
    Departamento de Ingeniería, Eléctrica y Electrónica, Instituto Tecnológico de Nuevo Léon, Mexico
    不详
    Control Intell Syst, 2006, 3 (206-215):
  • [6] Interval Type-2 Fuzzy Logic Toolbox
    Castro, Juan R.
    Castillo, Oscar
    Martinez, Luis G.
    ENGINEERING LETTERS, 2007, 15 (01)
  • [7] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [8] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Jonathan Perez
    Fevrier Valdez
    Oscar Castillo
    Patricia Melin
    Claudia Gonzalez
    Gabriela Martinez
    Soft Computing, 2017, 21 : 667 - 685
  • [9] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Perez, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    Melin, Patricia
    Gonzalez, Claudia
    Martinez, Gabriela
    SOFT COMPUTING, 2017, 21 (03) : 667 - 685
  • [10] Interval Type-2 Fuzzy Logic for Parameter Adaptation in the Gravitational Search Algorithm
    Gonzalez, Beatriz
    Valdez, Fevrier
    Melin, Patricia
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2016, PT I, 2017, 10061 : 239 - 249