The congruence xn =- a n ( mod m ) : Solvability and related OEIS sequences

被引:0
作者
Merikoski, Jorma K. [1 ]
Haukkanen, Pentti [1 ]
Tossavainen, Timo [2 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, FI-33014 Tampere, Finland
[2] Lulea Univ Technol, Dept Arts Commun & Educ, SE-97187 Lulea, Sweden
关键词
Congruence of powers; Integer sequence; Experimental geometry;
D O I
10.7546/nntdm.2024.30.3.516-529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the solvability of the congruence xn =-an (mod m), where n, m E Z`, a E Z, and gcd (a, m) = 1. Our motivation arises from computer experiments concerning a geometric property of the roots of the congruence xn + yn = 0 (mod p), where n E Z` and p E P. We encounter several OEIS sequences. We also make new observations on some of them.
引用
收藏
页码:516 / 529
页数:14
相关论文
共 11 条
[1]  
Apostol T. M., 1986, Introduction to Analytic Number Theory, V3rd
[2]  
Dence J.B., 1997, Missouri Journal of Mathematical Sciences, V9, P72, DOI 10.35834/1997/0902072
[3]  
Dence J. B., 1995, Missouri Journal of Mathematical Sciences, V7, P24
[4]  
Dence J. B., 1996, Missouri Journal of Mathematical Sciences, V8, P26
[5]  
Dickson L. E., 1999, History of the Theory of Numbers, V3
[6]  
GRAHAM R. L., 1994, Concrete Mathematics: A Foundation for Computer Science, V2nd
[7]  
Lozano-Robledo A., 2019, Number Theory and Geometry: An Introduction to Arithmetic Geometry
[8]  
Mustonen S, 2022, Diophantine equations Xn + Yn = 0 (mod P). Additional results and graphical presentations
[9]  
Mustonen S., 1992, Survo Systems
[10]  
Nair UP, 2004, Arxiv, DOI arXiv:math/0408107