Pioneering Built-In Interfacial Electric Field for Enhanced Anion Exchange Membrane Water Electrolysis

被引:9
作者
Huang, Huawei [1 ,2 ]
Xu, Liangliang [3 ]
Zuo, Shouwei [1 ,2 ]
Ren, Yuanfu [1 ,2 ]
Song, Lu [2 ]
Zou, Chen [1 ,2 ]
Wang, Xingkun [4 ]
Martinez, Javier Ruiz [2 ]
Huang, Kuo-Wei [1 ,2 ]
Zhang, Huabin [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Ctr Renewable Energy & Storage Technol CREST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[2] King Abdullah Univ Sci & Technolog, KAUST Catalysis Ctr KCC, Thuwal 239556900, Saudi Arabia
[3] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[4] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Key Lab Funct Membrane Mat & Membrane Tech, Qingdao 266101, Peoples R China
关键词
hydrogen evolution reaction; built-in interfacial electric field; anion exchange membrane water electrolysis; non-precious metal catalysts; electrocatalysis; OXYGEN EVOLUTION; HYDROGEN; EFFICIENT; REDUCTION; CATALYST;
D O I
10.1002/anie.202414647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a half-reaction in anion exchange membrane water electrolysis (AEMWE) technology, the hydrogen evolution reaction (HER) at the cathode is severely hindered by the sluggish reaction kinetics involved in additional water dissociation step, which results in large overpotentials and low energy conversion efficiency. Here, we develop a nano-heterostructure composed of ultra-thin W5N4 shells over Ni3N nanoparticles (Ni3N@W5N4) as efficient catalysts, in which built-in interfacial electric field (BIEF) is created owing to the distinct lattice arrangements and work functions of biphasic metal nitrides. The BIEF facilitates the electron localization around the interface and enables high valence W and more exposed binding sites in the surface W5N4 shell for accelerating the water dissociation step, ultimately leading to a remarkable reduction in the energy barriers of RDS from 1.40 eV to 0.26 eV. Theoretical calculations and operando X-ray absorption spectroscopy analysis results demonstrated that surface W5N4 serves as the active species for HER. Moreover, the ultra-thin shell characteristics enable the optimized W5N4 with enhanced intrinsic catalytic activity to be fully exposed as active sites. Consequently, the Ni3N@W5N4 exhibits exceptional performance in alkaline HER (60 mV@10 mA cm-2) and remarkable long-term stability (500 mA cm-2 for 100 hours). When employed as the cathode in the AEMWE device, the synthesized Ni3N@W5N4 demonstrates stable performance for 90 hours at a current density of 1 A cm-2.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[2]  
C.S. of Electrochemistry, 2024, J. Electrochem., V30, DOI [10.61558/2993-074x.3444, DOI 10.61558/2993-074X.3444]
[3]   Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution [J].
Chen, Wenxing ;
Pei, Jiajing ;
He, Chun-Ting ;
Wan, Jiawei ;
Ren, Hanlin ;
Wang, Yu ;
Dong, Juncai ;
Wu, Konglin ;
Cheong, Weng-Chon ;
Mao, Junjie ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
ADVANCED MATERIALS, 2018, 30 (30)
[4]   In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution [J].
Cheng, Weiren ;
Xi, Shibo ;
Wu, Zhi-Peng ;
Luan, Deyan ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2021, 7 (46)
[5]   Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting [J].
Dotan, Hen ;
Landman, Avigail ;
Sheehan, Stafford W. ;
Malviya, Kirtiman Deo ;
Shter, Gennady E. ;
Grave, Daniel A. ;
Arzi, Ziv ;
Yehudai, Nachshon ;
Halabi, Manar ;
Gal, Netta ;
Hadari, Noam ;
Cohen, Coral ;
Rothschild, Avner ;
Grader, Gideon S. .
NATURE ENERGY, 2019, 4 (09) :786-795
[6]  
Fan YX, 2021, ADV MATER, V33, DOI [10.1002/adma.202004243, 10.1002/adma.202003956]
[7]   Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers [J].
Hao, Shaoyun ;
Sheng, Hongyuan ;
Liu, Min ;
Huang, Jinzhen ;
Zheng, Guokui ;
Zhang, Fan ;
Liu, Xiangnan ;
Su, Zhiwei ;
Hu, Jiajun ;
Qian, Yang ;
Zhou, Lina ;
He, Yi ;
Song, Bo ;
Lei, Lecheng ;
Zhang, Xingwang ;
Jin, Song .
NATURE NANOTECHNOLOGY, 2021, 16 (12) :1371-U76
[8]   Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production [J].
He, Yongmin ;
Liu, Liren ;
Zhu, Chao ;
Guo, Shasha ;
Golani, Prafful ;
Koo, Bonhyeong ;
Tang, Pengyi ;
Zhao, Zhiqiang ;
Xu, Manzhang ;
Yu, Peng ;
Zhou, Xin ;
Gao, Caitian ;
Wang, Xuewen ;
Shi, Zude ;
Zheng, Lu ;
Yang, Jiefu ;
Shin, Byungha ;
Arbiol, Jordi ;
Duan, Huigao ;
Du, Yonghua ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Guo, Wanlin ;
Wang, Qi Jie ;
Zhang, Zhuhua ;
Liu, Zheng .
NATURE CATALYSIS, 2022, 5 (03) :212-221
[9]   Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting [J].
Hu, Congling ;
Zhang, Lei ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2620-2645
[10]   Manipulation of Oxidation States on Phase Boundary via Surface Layer Modification for Enhanced Alkaline Hydrogen Electrocatalysis [J].
Huang, Huawei ;
Xu, Liangliang ;
Zuo, Shouwei ;
Song, Lu ;
Zou, Chen ;
Garcia-Melchor, Max ;
Li, Yang ;
Ren, Yuafu ;
Rueping, Magnus ;
Zhang, Huabin .
ADVANCED MATERIALS, 2024, 36 (51)