Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints

被引:2
作者
Petreska, Irina [1 ]
Trajanovski, Pece [1 ,2 ]
Sandev, Trifce [1 ,2 ,3 ]
Rocha, Jonathan A. M. Almeida [4 ]
de Castro, Antonio Sergio Magalhaes [4 ]
Lenzi, Ervin K. [4 ,5 ]
机构
[1] Ss Cyril & Methodius Univ Skopje, Fac Nat Sci & Math Skopje, Inst Biol, Arhimedova 3, Skopje 1000, North Macedonia
[2] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[3] Korea Univ, Dept Phys, Seoul 02841, South Korea
[4] Univ Estadual Ponta Grossa, Dept Fis, Ave Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, PR, Brazil
[5] Univ Estadual Maringa, Dept Fis, Ave Colombo 5790, BR-87020900 Maringa, PR, Brazil
关键词
time-dependent 3D Schr & ouml; dinger equation; nonlocal interactions; quantum dynamics; Green's functions; ANOMALOUS DIFFUSION; FRACTIONAL CALCULUS;
D O I
10.3390/math13010137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we investigate a three-dimensional Schr & ouml;dinger equation that generalizes the standard framework by incorporating geometric constraints. Specifically, the equation is adapted to account for a backbone structure exhibiting memory effects dependent on both time and spatial position. For this, we incorporate an additional term in the Schr & ouml;dinger equation with a nonlocal dependence governed by short- or long-tailed distributions characterized by power laws associated with L & eacute;vy distributions. This modification also introduces a backbone structure within the system. We derive solutions that reveal various behaviors using Green's function approach expressed in terms of Fox H-functions.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Colloquium: Anomalous statistics of laser-cooled atoms in dissipative optical lattices [J].
Afek, Gadi ;
Davidson, Nir ;
Kessler, David A. ;
Barkai, Eli .
REVIEWS OF MODERN PHYSICS, 2023, 95 (03)
[2]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[3]   Subordination Approach to Space-Time Fractional Diffusion [J].
Bazhlekova, Emilia ;
Bazhlekov, Ivan .
MATHEMATICS, 2019, 7 (05)
[4]   Computational methods for 2D materials modelling [J].
Carvalho, A. ;
Trevisanutto, P. E. ;
Taioli, S. ;
Castro Neto, A. H. .
REPORTS ON PROGRESS IN PHYSICS, 2021, 84 (10)
[5]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[6]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[7]  
Duffy D. G., 2001, ST ADV MATH
[8]  
Gorenflo R., 1998, Fract. Calc. Appl. Anal, V1, P167
[9]  
Gorenflo R., 2020, Mittag-Leffler Functions, DOI DOI 10.1007/978-3-662-43930-2
[10]   Continuous-time random walk and parametric subordination in fractional diffusion [J].
Gorenflo, Rudolf ;
Mainardi, Francesco ;
Vivoli, Alessandro .
CHAOS SOLITONS & FRACTALS, 2007, 34 (01) :87-103