Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy

被引:0
|
作者
Helfferich, Kristiaan H. [1 ]
Meeldijk, Johannes D. [1 ,3 ]
van Huis, Marijn A. [2 ]
van der Hoeven, Jessi E. S. [1 ]
de Jongh, Petra E. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Mat Chem & Catalysis, Utrecht, Netherlands
[2] Univ Utrecht, Debye Inst Nanomat Sci, Soft Condensed Matter, Utrecht, Netherlands
[3] Univ Utrecht, Electron Microscopy Ctr, UTRECHT, Netherlands
关键词
Bimetallic catalysts; Pd-Ni; EDX spectroscopy; Colocation analysis; BIMETALLIC CATALYSTS; RADIATION-DAMAGE; NANOPARTICLES;
D O I
10.1016/j.ultramic.2025.114123
中图分类号
TH742 [显微镜];
学科分类号
摘要
Multicomponent nanostructured materials are key amongst others for energy and catalysis applications. The nanoscale proximity of different metals critically determines the performance of these functional materials. However, it is difficult to study the spatial distribution of different elements at the nanoscale, especially achieving a statistically relevant assessment. Additionally, common support materials like metal oxides are sensitive to electron beam damage when using high resolution local techniques, such as transmission electron microscopy. We present a robust strategy to quantitatively assess elemental distributions in 3D nanostructured beam-sensitive samples. Key elements are resin embedding, and elemental co-localisation building on a combination of electron tomography and energy-dispersive X-ray spectroscopy. We showcase the methodology with similar to 3 nm Pd-Ni nanoparticles supported on mesoporous silica. Epoxy resin-embedding ensured sufficient sample stability under the electron beam for tomography-based quantification of different mano- and mesoscale elemental distributions in these samples. Reliable co-location results were obtained and practical guidelines are provided for acquisition and post-processing, relevant for elemental overlap analysis in multi-metallic samples.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Optimum Energy-Dispersive X-Ray Spectroscopy Elemental Mapping for Advanced Catalytic Materials
    Zhang, Bingsen
    Zhang, Wei
    Shao, Lidong
    Su, Dang Sheng
    CHEMCATCHEM, 2013, 5 (09) : 2586 - 2590
  • [2] ENERGY-DISPERSIVE X-RAY SPECTROSCOPY
    HURLEY, JP
    DAGRAGNA.VL
    MATHIESEN, JM
    RESEARCH-DEVELOPMENT, 1970, 21 (12): : 14 - +
  • [3] ENERGY-DISPERSIVE X-RAY EMISSION SPECTROSCOPY
    FRANKEL, RS
    AITKEN, DW
    APPLIED SPECTROSCOPY, 1970, 24 (06) : 557 - &
  • [4] Application of x-ray optics to energy-dispersive spectroscopy
    McCarthy, JJ
    McMillan, DJ
    MICROSCOPY AND MICROANALYSIS, 1998, 4 (06) : 632 - 639
  • [5] Elemental analysis of individual combinatorial chemistry library members by energy-dispersive X-ray spectroscopy
    Neilly, JP
    Hochlowski, JE
    APPLIED SPECTROSCOPY, 1999, 53 (01) : 74 - 81
  • [6] Energy-dispersive X-ray fluorescence study of elemental uptake in cauliflower
    Gupta, D.
    Chatterjee, J. M.
    Ghose, R.
    Mitra, A. K.
    Roy, S.
    Sarkar, M.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 76 (02): : 344 - 349
  • [7] Energy-dispersive X-ray fluorescence study of elemental uptake in cauliflower
    Gupta D.
    Chatterjee J.M.
    Ghose R.
    Kmitra A.
    Roy S.
    Sarkar M.
    Pramana, 2011, 76 (2) : 345 - 349
  • [8] QUALITATIVE IDENTIFICATION OF ALLOYS BY ENERGY-DISPERSIVE X-RAY SPECTROSCOPY
    HARRISON, PE
    KENNA, BT
    TALANTA, 1972, 19 (06) : 810 - &
  • [9] PRINCIPLES OF DIFFERENTIAL ENERGY-DISPERSIVE X-RAY SPECTROSCOPY (DEDXS)
    COUSINS, CSG
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1988, 21 : 496 - 503
  • [10] Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy
    Leslie J. Allen
    Adrian J. D’Alfonso
    Bert Freitag
    Dmitri O. Klenov
    MRS Bulletin, 2012, 37 : 47 - 52