The Synergistic Effect of Two Alloying Elements on the Microstructures and Properties of Zn-2.5Al-3Mg Alloys

被引:0
作者
Ma, Longyue [1 ]
Chen, Wenxuan [2 ]
Zhou, Guorong [1 ]
Teng, Xinying [1 ]
Yu, Shui [1 ]
Zhang, Mengmeng [1 ]
Sun, Jin [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan, Peoples R China
[2] Dongyang Xinna Coating Co Ltd, Dept Technol, Jinhua, Peoples R China
来源
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION | 2025年 / 76卷 / 04期
关键词
corrosion resistance; electrochemistry; microstructure; Zn-Al-Mg alloy; ZN-AL-MG; CORROSION-RESISTANCE; SURFACE-CHEMISTRY; COATED STEEL; COATINGS; ZINC; MORPHOLOGY; STABILITY; EXPOSURE; BEHAVIOR;
D O I
10.1002/maco.202414634
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present study investigates the microstructure, hardness, and corrosion behavior of Zn-2.5Al-3Mg alloys with the addition of two elements (Zr-Si, Zr-Sb, and Zr-Ti). This analysis includes SEM/EDS, Brinell hardness testing, electrochemical measurements, and XPS. The SEM results indicate that the Zn-2.5Al-3Mg alloy, with added Zr and Ti elements, exhibits finer grains and a more homogeneous structure compared to the other two combinations (Zr-Si and Zr-Sb). Electrochemical analysis indicated that the Zn-2.5Al-3Mg-0.2(Zr-Ti) alloy exhibited the best corrosion resistance among all the samples tested. Furthermore, XPS identified that the corrosion products of the Zn-2.5Al-3Mg-0.2(Zr-Ti) alloy mainly consist of dense Zn5(OH)6(CO3)2, ZnAl2O4, and MgAl2O4. An exploration into the corrosion resistance mechanism of the Zn-2.5Al-3Mg-0.2(Zr-Ti) alloy showed that the dense corrosion products formed during the corrosion process gradually accumulate and fill corrosion gaps. This accumulation hinders the progression of corrosion into the metal, ultimately enhancing the alloy's corrosion resistance.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 40 条
[1]   Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings [J].
Amadeh, A ;
Pahlevani, B ;
Heshmati-Manesh, S .
CORROSION SCIENCE, 2002, 44 (10) :2321-2331
[2]   On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings [J].
Asgari, H. ;
Toroghinejad, M. R. ;
Golozar, M. A. .
APPLIED SURFACE SCIENCE, 2007, 253 (16) :6769-6777
[3]   Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate [J].
Azevedo, M. Salgueiro ;
Allely, C. ;
Ogle, K. ;
Volovitch, P. .
CORROSION SCIENCE, 2015, 90 :472-481
[4]  
Bellini C., 2022, PROCEDIA STRUCT INTE, V39, P574, DOI [10.1016/j.prostr.2022.03.131, DOI 10.1016/J.PROSTR.2022.03.131]
[5]   Effect of antimony additions on the microstructure and performance of Zn-Mg-Al alloy coatings [J].
Britton, Daniel A. ;
Penney, David ;
Malla, Amar D. ;
Mehraban, Shahin ;
Sullivan, James ;
Goldsworthy, Mathew ;
McGettrick, James ;
Johnston, Richard ;
Mitchell, Ria L. ;
Challinor, Clive .
NPJ MATERIALS DEGRADATION, 2024, 8 (01)
[6]   Corrosion Behavior of Mg2Zn11 and MgZn2 Single Phases [J].
Byun, Jong Min ;
Yu, Ji Min ;
Kim, Dae Kyung ;
Kim, Tae-Yeob ;
Jung, Woo-Sung ;
Kim, Young Do .
KOREAN JOURNAL OF METALS AND MATERIALS, 2013, 51 (06) :413-419
[7]  
Chen WX, 2023, RARE METAL MAT ENG, V52, P2737
[8]   Recent research progress on additive manufacturing of high-strength low-alloy steels: Focusing on the processing parameters, microstructures and properties [J].
Cheng, Hailong ;
Luo, Xinchun ;
Wu, Xin .
MATERIALS TODAY COMMUNICATIONS, 2023, 36
[9]   Microstructural characterization and quantification of Zn-Al-Mg surface coatings [J].
Commenda, C. ;
Puehringer, J. .
MATERIALS CHARACTERIZATION, 2010, 61 (10) :943-951
[10]   The effect of plasma treatment on the surface chemistry and structure of ZnMgAl coatings [J].
Duchoslav, J. ;
Kehrer, M. ;
Truglas, T. ;
Groiss, H. ;
Nadlinger, M. ;
Hader-Kregl, L. ;
Riener, C. K. ;
Arndt, M. ;
Stellnberger, K. H. ;
Luckeneder, G. ;
Angeli, G. ;
Stehrer, T. ;
Stifter, D. .
APPLIED SURFACE SCIENCE, 2020, 504