HQ-DTM: A Hierarchical Q-learning Algorithm for Dynamic Thermal Management of Multi-core Processors

被引:0
作者
Akib, Abir Ahsan [1 ]
Srivastava, Ankur [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
来源
PROCEEDINGS OF THE 29TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED 2024 | 2024年
关键词
Dynamic thermal management(DTM); hierarchical Q-learning; DVFS; multi-core processors;
D O I
10.1145/3665314.3670842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a hierarchical Q-learning algorithm for dynamic thermal management (HQ-DTM) of multi-core processors. The proposed technique aims to maximize the performance of the processor subject to temperature constraints, while minimizing temperature measurement overhead. In order to achieve this, a Q-learning-based temperature measurement module is deployed alongside a Q-learning-based working mode selection module. The temperature measurement module determines the granularity of thermal model to be used under different workloads to ensure that temperature measurement overhead remains minimal while satisfying temperature constraints. The temperature measured is provided as input to the working mode selection module. It uses dynamic voltage and frequency scaling as control to maximize the throughput of each core while maintaining temperature and temporal temperature gradient (TTG) constraints. Our proposed technique has been evaluated for the SPLASH2 benchmarks. The results shows clear evidence that HQ-DTM mitigates the trade-off between processor performance and maintaining optimum thermal behavior.
引用
收藏
页数:6
相关论文
共 13 条
[1]   An Evaluation of High-Level Mechanistic Core Models [J].
Carlson, Trevor E. ;
Heirman, Wim ;
Eyerman, Stijn ;
Hur, Ibrahim ;
Eeckhout, Lieven .
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2014, 11 (03) :127-151
[2]   Reinforcement learning-Based Inter- and Intra-Application Thermal Optimization for lifetime Improvement of Multicore Systems [J].
Das, Anup ;
Shafik, Rishad A. ;
Merrett, Geoff V. ;
Al-Hashimi, Bashir M. ;
Kumar, Akash ;
Veeravalli, Bharadwaj .
2014 51ST ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2014,
[3]   HotSpot: A compact thermal modeling methodology for early-stage VLSI design [J].
Huang, Wei ;
Ghosh, Shougata ;
Velusamy, Siva ;
Sankaranarayanan, Karthik ;
Skadron, Kevin ;
Stan, Mircea R. .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2006, 14 (05) :501-513
[4]  
Iranfar A, 2020, DES AUT TEST EUROPE, P418, DOI 10.23919/DATE48585.2020.9116510
[5]  
Iranfar A, 2015, I SYMPOS LOW POWER E, P291, DOI 10.1109/ISLPED.2015.7273529
[6]   An Adaptive Thermal Management Framework for Heterogeneous Multi-Core Processors [J].
Kim, Young Geun ;
Kim, Minyong ;
Kong, Joonho ;
Chung, Sung Woo .
IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (06) :894-906
[7]  
Sheng Li, 2009, Proceedings of the 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2009), P469
[8]  
Siddhu L, 2022, DES AUT TEST EUROPE, P1377, DOI 10.23919/DATE54114.2022.9774743
[9]  
WOO SC, 1995, ACM COMP AR, P24, DOI 10.1109/ISCA.1995.524546
[10]  
Yang J, 2008, INT SYM PERFORM ANAL, P191