Stability-guaranteed data-driven nonlinear predictive control of water distribution systems

被引:0
|
作者
Putri, Saskia A. [1 ]
Moazeni, Faegheh K. [1 ]
机构
[1] Lehigh Univ, Civil & Environm Engn Dept, 1 West Packer Ave, Bethlehem, PA 18015 USA
关键词
Dynamic model identification; Sparse regression; Nonlinear control; Quasi-infinite horizon; Lyapunov stability theorem; Water systems; CONTROL SCHEME; MPC; NETWORK;
D O I
10.1016/j.conengprac.2025.106243
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stability in the operation of water distribution systems (WDSs) is paramount to maintaining efficient and reliable water delivery. Nonlinear model predictive control (NMPC) emerged as a suitable control strategy due to WDSs' inherent nonlinearity and cross-coupling dynamics. However, classical NMPC is formulated under a finite horizon and does not guarantee closed-loop stability. It also relies heavily on intricate model- based dynamics, a cumbersome and time-consuming process for large-scale WDSs. This paper proposes a comprehensive control strategy that employs a data-enabled model identification technique, replacing physics- based models and ensuring stability and recursive feasibility via quasi-infinite horizon NMPC. The main objective of this work is to satisfy the water demand at every time step while guaranteeing astable pressure head and energy-efficient pump operation in the WDS. A complete stability and feasibility analysis of the control strategy is also provided. Extensive simulations validate the proposed method demonstrating (1) data- driven model accuracy with an unseen and noisy dataset exhibiting 0.01% error and (2) optimal WDS operation under nominal and robust conditions, ensuring demand compliance, cost-savings by 8% ($18k annually), and pressure head stability within 5% of the steady-state value.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Experimental Validation of a Guaranteed Nonlinear Model Predictive Control
    Fnadi, Mohamed
    Alexandre Dit Sandretto, Julien
    ALGORITHMS, 2021, 14 (08)
  • [32] Data-driven decision support for rail traffic control: A predictive approach
    Luo, Jie
    Peng, Qiyuan
    Wen, Chao
    Wen, Wen
    Huang, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [33] A Model Predictive Control for Heat Supply at Building Thermal Inlet Based on Data-Driven Model
    Ma, Liangdong
    Huang, Yangyang
    Zhang, Jiyi
    Zhao, Tianyi
    BUILDINGS, 2022, 12 (11)
  • [34] A New Data-Driven Model-Free Adaptive Control for Discrete-Time Nonlinear Systems
    Deng, Kai
    Li, Fanbiao
    Yang, Chunhua
    IEEE ACCESS, 2019, 7 : 126224 - 126233
  • [35] Data-Driven Strategy Synthesis for Stochastic Systems with Unknown Nonlinear Disturbances
    Gracia, Ibon
    Boskos, Dimitris
    Laurenti, Luca
    Lahijanian, Morteza
    6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE, 2024, 242 : 1633 - 1645
  • [36] Data-Driven Tracking Control With Adaptive Dynamic Programming for a Class of Continuous-Time Nonlinear Systems
    Mu, Chaoxu
    Ni, Zhen
    Sun, Changyin
    He, Haibo
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) : 1460 - 1470
  • [37] Application of data-driven methods in power systems analysis and control
    Bertozzi, Otavio
    Chamorro, Harold R.
    Gomez-Diaz, Edgar O.
    Chong, Michelle S.
    Ahmed, Shehab
    IET ENERGY SYSTEMS INTEGRATION, 2024, 6 (03) : 197 - 212
  • [38] Data-Driven Optimal Control of Nonlinear Dynamics Under Safety Constraints
    Yu, Hongzhe
    Moyalan, Joseph
    Vaidya, Umesh
    Chen, Yongxin
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2240 - 2245
  • [39] Data-Driven Iterative Adaptive Dynamic Programming Algorithm for Approximate Optimal Control of Unknown Nonlinear Systems
    Li, Hongliang
    Liu, Derong
    Wang, Ding
    Li, Chao
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3265 - 3271
  • [40] Constrained robust model predictive control embedded with a new data-driven technique
    Yang, L.
    Lu, J.
    Xu, Y.
    Li, D.
    Xi, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (16) : 2395 - 2405