Axial crushing response of novel toothed gear bio-inspired 3D printed energy absorbing structures

被引:1
|
作者
Isaac, Chukwuemeke William [1 ]
Duddeck, Fabian [2 ]
San Ha, Ngoc [3 ]
机构
[1] Silesian Tech Univ, Fac Mech Engn, Dept Machine Technol, Konarskiego 18A, PL-44100 Gliwice, Poland
[2] Tech Univ Munich, TUM Sch Engn & Design, Arcisstr 21, D-80333 Munich, Germany
[3] RMIT Univ, Ctr Innovat Struct & Mat, Sch Engn, Melbourne 3000, Australia
关键词
Crashworthiness performance; Additive manufacturing; Bio-inspired structure; Toothed gear; Polymer-based materials; Composite-like deformation mechanism; VELOCITY IMPACT RESISTANCE; ABSORPTION; DESIGN;
D O I
10.1016/j.ijmecsci.2025.110033
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The conventional hollow cylindrical energy absorbing structure continues to face issues due to its relatively heavier weight, resulting in a very high initial peak load during crushing, hence, lowering its overall crushing performance. To address this challenge, this paper presents a novel bio-inspired cylindrical energy absorber by introducing toothed gears to the outer part of the hollow cylindrical structure, thereby, optimising it. The novel toothed gear bio-inspired cylindrical structures (TGBCS) are additively manufactured and made from six different polymer-based materials. These TGBCS are designed to mimic the gear-like profiles and the energy absorbing capabilities in the hind legs of the issus coleoptratus insect. The TGBCS are axially compressed under quasi-static loading condition and their crashworthiness performance are investigated experimentally, numerically and analytically. Composite-like deformation mechanisms are produced by the TGBCS which lead to improved load bearing and energy absorption capacities compared to their conventional types. The results also indicate that the TGBCS made from poly-lactic acid produce the best overall crushing performance in terms of specific energy absorption (SEA), mean crushing load (MCL) and crush load efficiency (CLE). Numerical investigation further reveals that SEA and CLE of TGBCS are approximately 52.54 % and 12.80 % higher than those of the conventional hollow cylindrical structures, respectively. Also, by correct choice of shape-topological modification of the TGBCS, it is observed that SEA can be significantly improved. Moreover, by using the simplified super folding element theory, the composite-like deformation mechanism of the TGBCS is adopted to formulate the mean crushing load.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Dynamic Response of 3D Printed Bio-Inspired Lightweight Structures
    Siddique, Shakib Hyder
    Hazell, Paul J.
    Pereira, Gerald G.
    Wang, Hongxu
    Escobedo, Juan P.
    DYNAMIC RESPONSE AND FAILURE OF COMPOSITE MATERIALS, DRAF 2024, 2025, : 312 - 322
  • [2] Impact energy absorption in 3D printed bio-inspired PLA structures
    Kazantseva, N. V.
    Onishchenko, A. O.
    Zelepugin, S. A.
    Cherepanov, R. O.
    Ivanova, O. V.
    POLYMER, 2025, 316
  • [3] Novel additively manufactured bio-inspired 3D structures for impact energy damping
    Maliaris, Georgios
    Argyros, Apostolos
    Smyrnaios, Emmanouil
    Michailidis, Nikolaos
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2021, 70 (01) : 199 - 202
  • [4] Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load
    Zhang, Yong
    Xu, Xiang
    Wang, Jin
    Chen, Tengteng
    Wang, Chun H.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 140 : 407 - 431
  • [5] Flexural behavior of 3D printed bio-inspired interlocking suture structures
    Wickramasinghe, Sachini
    Do, Truong
    Tran, Phuong
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2022, 1 (02):
  • [6] Analysing fracture properties of bio-inspired 3D printed suture structures
    Wickramasinghe, Sachini
    Peng, Chenxi
    Ladani, Raj
    Tran, Phuong
    THIN-WALLED STRUCTURES, 2022, 176
  • [7] 3D Printed Bio-inspired Angular Acceleration Sensor
    van Tiem, Joel
    Groenesteijn, Jarno
    Sanders, Remco
    Krijnen, Gijs
    2015 IEEE SENSORS, 2015, : 1430 - 1433
  • [8] Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – A review
    Siddique, Shakib Hyder
    Hazell, Paul J.
    Wang, Hongxu
    Escobedo, Juan P.
    Ameri, Ali A.H.
    Additive Manufacturing, 2022, 58
  • [9] An experimental and numerical investigation on the performance of novel hybrid bio-inspired 3D printed lattice structures for stiffness and energy absorption applications
    Doodi, Ramakrishna
    Gunji, Bala Murali
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (17) : 3970 - 3979
  • [10] Bio-inspired 3D-printed lattice structures for energy absorption applications: A review
    Ramakrishna, Doodi
    Murali, Gunji Bala
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2023, 237 (03) : 503 - 542