Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells

被引:4
作者
He, Jiang [1 ]
Zhang, Jiyao [1 ]
Zhang, Yong [1 ]
Xu, Jiamin [1 ]
Liang, Zheng [3 ]
Zhu, Peide [1 ]
Peng, Wenbo [1 ]
Qu, Geping [1 ]
Pan, Xu [3 ]
Wang, Xingzhu [1 ,4 ]
Xu, Baomin [1 ,2 ,5 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Ener, Guangdong Inst, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Solid State Phys, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Peoples R China
[4] Shenzhen Putai Technol Co Ltd, Shenzhen 518110, Peoples R China
[5] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cells; organic crosslinked tin oxide; buried interface; electron transport layer; THIN-FILMS; SNO2; DECOMPOSITION; CONTACT; LAYERS;
D O I
10.1002/anie.202419957
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity. In this study, we report a strategy to homogenize SnO2 with reduced defects for high-performance PSCs. The commercial SnO2 colloid is modulated with bisphenol S (BPS) crosslinking to achieve a better annealing intermediate state. The phenolic hydroxyl groups on BPS bond with the hydroxyl groups on the SnO2 surface, passivating defects as well as promoting superb regularity of the films by forming a network of the SnO2 nanoparticles. Additionally, the sulfone groups on BPS coordinate with Pb2+, regulating the crystallization of PbI2 and FAPbI(3), which leads to better interface contact at the buried interface. The FAPbI(3) perovskite solar cells based on BPS-crosslinked SnO2 layers achieved a champion efficiency of 24.87% and retained 95% of their initial PCE after 1000 hours of continuous light soaking under N-2 atmosphere.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Interface-limited injection in amorphous organic semiconductors [J].
Baldo, MA ;
Forrest, SR .
PHYSICAL REVIEW B, 2001, 64 (08)
[2]   Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells [J].
Cao, Qi ;
Li, Zhen ;
Han, Jian ;
Wang, Shuangjie ;
Zhu, Jinmeng ;
Tang, Huijie ;
Li, Xiaoqiang ;
Li, Xuanhua .
SOLAR RRL, 2019, 3 (12)
[3]   Regulating surface potential maximizes voltage in all-perovskite tandems [J].
Chen, Hao ;
Maxwell, Aidan ;
Li, Chongwen ;
Teale, Sam ;
Chen, Bin ;
Zhu, Tong ;
Ugur, Esma ;
Harrison, George ;
Grater, Luke ;
Wang, Junke ;
Wang, Zaiwei ;
Zeng, Lewei ;
Park, So Min ;
Chen, Lei ;
Serles, Peter ;
Awni, Rasha Abbas ;
Subedi, Biwas ;
Zheng, Xiaopeng ;
Xiao, Chuanxiao ;
Podraza, Nikolas J. ;
Filleter, Tobin ;
Liu, Cheng ;
Yang, Yi ;
Luther, Joseph M. ;
De Wolf, Stefaan ;
Kanatzidis, Mercouri G. ;
Yan, Yanfa ;
Sargent, Edward H. .
NATURE, 2023, 613 (7945) :676-+
[4]   Causes and Solutions of Recombination in Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (47)
[5]   Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High-Performance Perovskite Solar Cells [J].
Chen, Xu ;
Xu, Wen ;
Ding, Nan ;
Ji, Yanan ;
Pan, Gencai ;
Zhu, Jinyang ;
Zhou, Donglei ;
Wu, Yanjie ;
Chen, Cong ;
Song, Hongwei .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
[6]   Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer [J].
Dong, Qingshun ;
Shi, Yantao ;
Wang, Kai ;
Li, Yu ;
Wang, Shufeng ;
Zhang, Hong ;
Xing, Yujin ;
Du, Yi ;
Bai, Xiaogong ;
Ma, Tingli .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (19) :10212-10217
[7]   Enhanced carrier transport and optical gains in perovskite solar cells based on low-temperature prepared TiO2@SnO2 nanocrystals [J].
Du, Daxue ;
Zhang, Dezhao ;
Liu, Hong ;
Shen, Wenzhong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 983
[8]   Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells [J].
Fu, Qiang ;
Tang, Xingchen ;
Liu, Hang ;
Wang, Rui ;
Liu, Tingting ;
Wu, Ziang ;
Woo, Han Young ;
Zhou, Tong ;
Wan, Xiangjian ;
Chen, Yongsheng ;
Liu, Yongsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) :9500-9509
[9]   Tailoring the Interface in FAPbI3 Planar Perovskite Solar Cells by Imidazole-Graphene-Quantum-Dots [J].
Gao, Zhi-Wen ;
Wang, Yong ;
Liu, Hui ;
Sun, Jiayun ;
Kim, Jinwook ;
Li, Yan ;
Xu, Baomin ;
Choy, Wallace C. H. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (27)
[10]   QUANTUM SIZE EFFECTS IN METAL PARTICLES [J].
HALPERIN, WP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (03) :533-606