On constraint qualifications and optimality conditions for nonsmooth multiobjective semi-infinite programming problems with switching constraints

被引:0
作者
Upadhyay, Balendu Bhooshan [1 ]
Ghosh, Arnav [1 ]
Zhao, Xiaopeng [2 ]
机构
[1] Indian Inst Technol Patna, Patna, India
[2] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
关键词
Multiobjective optimization; semi-infinite programming; switching constraints; Pareto efficiency; OPTIMIZATION;
D O I
10.1080/02331934.2024.2437795
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we explore a class of nonsmooth multiobjective semi-infinite optimization problems with switching constraints (abbreviated as, (NMSIPSC)) in the framework of Euclidean space. Corresponding to the considered problem (NMSIPSC), the generalized Guignard constraint qualification (abbreviated as, (NMSIPSC-GGCQ)) is introduced in the Euclidean space setting. Karush-Kuhn-Tucker (abbreviated as, KKT) type necessary conditions of Pareto-efficiency are derived for (NMSIPSC). Subsequently, we introduce several other constraint qualifications, which turn out to be sufficient conditions for (NMSIPSC-GGCQ). We have furnished non-trivial illustrative examples to demonstrate the significance of our results. To the best of our knowledge, constraint qualifications for (NMSIPSC) have not yet been studied in the Euclidean space setting.
引用
收藏
页数:26
相关论文
共 42 条
[1]   DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES [J].
CHARNES, A ;
KORTANEK, K ;
COOPER, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (05) :783-&
[2]  
Clarke F., 1983, Optimization and Nonsmooth Analysis
[3]   Nonconvex penalization of switching control of partial differential equations [J].
Clason, Christian ;
Rund, Armin ;
Kunisch, Karl .
SYSTEMS & CONTROL LETTERS, 2017, 106 :1-8
[4]   A convex penalty for switching control of partial differential equations [J].
Clason, Christian ;
Rund, Armin ;
Kunisch, Karl ;
Barnard, Richard C. .
SYSTEMS & CONTROL LETTERS, 2016, 89 :66-73
[5]  
Ghosh A., 2023, Aust. J. Math. Anal. Appl, V20, P1
[6]  
Goberna MiguelA., 1998, Mathematical Methods in Practice, V2
[7]  
Haar A., 1924, Acta Math. Szeged, V2, P1
[8]  
Hiriart-Urruty J., 1996, Convex Analysis and Minimization Algorithms I
[9]   Optimality conditions for nonsmooth semi-infinite multiobjective programming [J].
Kanzi, N. ;
Nobakhtian, S. .
OPTIMIZATION LETTERS, 2014, 8 (04) :1517-1528
[10]   Optimality conditions for non-smooth semi-infinite programming [J].
Kanzi, N. ;
Nobakhtian, S. .
OPTIMIZATION, 2010, 59 (05) :717-727