Machine learning-based fatigue life prediction of laser powder bed fusion additively manufactured Hastelloy X via nondestructively detected defects

被引:2
作者
Wang, Haijie [1 ]
Zhang, Jianrui [1 ]
Li, Bo [1 ]
Xuan, Fuzhen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Fatigue life; Micro-computerized tomography; Defect; Machine learning; Laser powder bed fusion;
D O I
10.1108/IJSI-09-2024-0161
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
PurposeBy incorporating the defect feature information, an ML-based linkage between defects and fatigue life unaffected by the time scale is developed, the primary focus is to quantitatively assess and elucidate the impact of different defect features on fatigue life.Design/methodology/approachA machine learning (ML) framework is proposed to predict the fatigue life of LPBF-built Hastelloy X utilizing microstructural defects identified through nondestructive detection prior to fatigue testing. The proposed method combines nondestructive micro-computerized tomography (micro-CT) technique to comprehensively analyze the size, location, morphology and distribution of the defects.FindingsIn the test set, SVM-based fatigue life prediction exhibits the highest accuracy. Regarding the defect information, the defect size significantly affects fatigue life, and the diameter of the circumscribed sphere of the largest defect has a critical effect on fatigue life.Originality/valueThis comprehensive approach provides valuable insights into the fatigue mechanism of structural materials in defective states, offering a novel perspective for better understanding the influence of defects on fatigue performance.
引用
收藏
页码:104 / 126
页数:23
相关论文
共 38 条
[1]   A machine-learning fatigue life prediction approach of additively manufactured metals [J].
Bao, Hongyixi ;
Wu, Shengchuan ;
Wu, Zhengkai ;
Kang, Guozheng ;
Peng, Xin ;
Withers, Philip J. .
ENGINEERING FRACTURE MECHANICS, 2021, 242
[2]   Metal additive manufacturing in aerospace: A review [J].
Blakey-Milner, Byron ;
Gradl, Paul ;
Snedden, Glen ;
Brooks, Michael ;
Pitot, Jean ;
Lopez, Elena ;
Leary, Martin ;
Berto, Filippo ;
du Plessis, Anton .
MATERIALS & DESIGN, 2021, 209
[3]   Probabilistic-based random maximum defect estimation and defect-related fatigue life prediction for laser direct deposited 316L parts [J].
Deng, Keke ;
Wei, Haiying ;
Liu, Wen ;
Zhang, Min ;
Zhao, Penghui ;
Zhang, Yi .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 299
[4]   Predicting fatigue life of metal LPBF components by combining a large fatigue database for different sample conditions with novel simulation strategies [J].
Elangeswaran, Chola ;
Cutolo, Antonio ;
Gallas, Simone ;
Dinh, Tien Dung ;
Lammens, Nicolas ;
Erdelyi, Hunor ;
Schulz, Matthias ;
Muralidharan, Gokula Krishna ;
Thijs, Lore ;
Craeghs, Tom ;
Bruycker, Evy De ;
Bore, Koen Vanden ;
Clijsters, Stijn ;
Peirs, Jan ;
Desmet, Win ;
Van Paepeghem, Win ;
Hooreweder, Brecht Van .
ADDITIVE MANUFACTURING, 2022, 50
[5]   X-ray imaging of defect population and the effect on high cycle fatigue life of laser additive manufactured Ti6Al4V alloys [J].
Gao, Xiangxi ;
Tao, Chunhu ;
Wu, Shengchuan ;
Chen, Bingqing ;
Wu, Sujun .
INTERNATIONAL JOURNAL OF FATIGUE, 2022, 162
[6]   Structural modeling of sandwich panels with additively manufactured strut-based lattice cores [J].
Georges, H. ;
Grossmann, A. ;
Mittelstedt, C. ;
Becker, W. .
ADDITIVE MANUFACTURING, 2022, 55
[7]   Defect-based probabilistic fatigue life estimation model for an additively manufactured aluminum alloy [J].
Haridas, Ravi Sankar ;
Thapliyal, Saket ;
Agrawal, Priyanka ;
Mishra, Rajiv S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798 (798)
[8]   Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach [J].
Hornas, Jan ;
Behal, Jiri ;
Homola, Petr ;
Senck, Sascha ;
Holzleitner, Martin ;
Godja, Norica ;
Pasztor, Zsolt ;
Hegedus, Balint ;
Doubrava, Radek ;
Ruzek, Roman ;
Petrusova, Lucie .
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 169
[9]   Defect tolerance and hydrogen susceptibility of the fatigue limit of an additively manufactured Ni-based superalloy 718 [J].
Kevinsannya ;
Okazaki, Saburo ;
Takakuwa, Osamu ;
Ogawa, Yuhei ;
Funakoshi, Yusuke ;
Kawashima, Hideto ;
Matsuoka, Saburo ;
Matsunaga, Hisao .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 139 (139)
[10]   Defect criticality analysis on fatigue life of L-PBF 17-4 PH stainless steel via machine learning [J].
Li, Anyi ;
Baig, Shaharyar ;
Liu, Jia ;
Shao, Shuai ;
Shamsaei, Nima .
INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163