SemRaFiner: Panoptic Segmentation in Sparse and Noisy Radar Point Clouds

被引:0
作者
Zeller, Matthias [1 ,2 ]
Herraez, Daniel Casado [1 ,2 ]
Ayan, Bengisu [1 ,3 ]
Behley, Jens [2 ]
Heidingsfeld, Michael [1 ]
Stachniss, Cyrill [2 ,4 ]
机构
[1] CARIAD SE, D-38442 Wolfsburg, Germany
[2] Univ Bonn, Ctr Robot, D-53113 Bonn, Germany
[3] Tech Univ Munich, D-80333 Munich, Germany
[4] Lamarr Inst Machine Learning & Artificial Intellig, Dortmund, Germany
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 02期
关键词
Radar; Point cloud compression; Feature extraction; Transformers; Semantics; Instance segmentation; Noise measurement; Doppler radar; Robot sensing systems; Radar imaging; Deep learning methods; semantic scene understanding;
D O I
10.1109/LRA.2024.3502058
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic scene understanding, including the perception and classification of moving agents, is essential to enabling safe and robust driving behaviours of autonomous vehicles. Cameras and LiDARs are commonly used for semantic scene understanding. However, both sensor modalities face limitations in adverse weather and usually do not provide motion information. Radar sensors overcome these limitations and directly offer information about moving agents by measuring the Doppler velocity, but the measurements are comparably sparse and noisy. In this letter, we address the problem of panoptic segmentation in sparse radar point clouds to enhance scene understanding. Our approach, called SemRaFiner, accounts for changing density in sparse radar point clouds and optimizes the feature extraction to improve accuracy. Furthermore, we propose an optimized training procedure to refine instance assignments by incorporating a dedicated data augmentation. Our experiments suggest that our approach outperforms state-of-the-art methods for radar-based panoptic segmentation.
引用
收藏
页码:923 / 930
页数:8
相关论文
共 50 条
  • [31] Category-Level Adversaries for Outdoor LiDAR Point Clouds Cross-Domain Semantic Segmentation
    Yuan, Zhimin
    Wen, Chenglu
    Cheng, Ming
    Su, Yanfei
    Liu, Weiquan
    Yu, Shangshu
    Wang, Cheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1982 - 1993
  • [32] Active Spatio-Fine Enhancement Network for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Xijiang
    Wang, Zihao
    Zhao, Bufan
    Qin, Mengjiao
    Han, Xianquan
    Ozdemir, Emirhan
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 37358 - 37379
  • [33] PN-Internet: Point-and-Normal Interactive Network for Noisy Point Clouds
    Yi, Cheng
    Wei, Zeyong
    Qiu, Jingbo
    Chen, Honghua
    Wang, Jun
    Wei, Mingqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [34] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [35] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] SectorGSnet: Sector Learning for Efficient Ground Segmentation of Outdoor LiDAR Point Clouds
    He, Dong
    Abid, Furqan
    Kim, Young-Min
    Kim, Jong-Hwan
    IEEE ACCESS, 2022, 10 : 11938 - 11946
  • [37] Context-Aware Network for Semantic Segmentation Toward Large-Scale Point Clouds in Urban Environments
    Liu, Chun
    Zeng, Doudou
    Akbar, Akram
    Wu, Hangbin
    Jia, Shoujun
    Xu, Zeran
    Yue, Han
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] ATTRIBUTE COMPRESSION FOR SPARSE POINT CLOUDS USING GRAPH TRANSFORMS
    Cohen, Robert A.
    Tian, Dong
    Vetro, Anthony
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1374 - 1378
  • [39] Weakly-Supervised Semantic Segmentation of ALS Point Clouds Based on Auxiliary Line and Plane Point Prediction
    Chen, Jintao
    Zhang, Yan
    Ma, Feifan
    Huang, Kun
    Tan, Zhuangbin
    Qi, Yuanjie
    Li, Jing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18096 - 18111
  • [40] Accurate 3-D Semantic Segmentation of Point Clouds for Intelligent Vehicles Based on Multiview Edge Guidance and Fusion
    Liu, Yan
    Xu, Lei
    Hu, Weiming
    Chen, Xiong
    Yi, Bo
    Mao, Qiu
    Kong, Dong
    Ruan, Shengping
    IEEE SENSORS JOURNAL, 2024, 24 (16) : 26853 - 26865