SemRaFiner: Panoptic Segmentation in Sparse and Noisy Radar Point Clouds

被引:0
|
作者
Zeller, Matthias [1 ,2 ]
Herraez, Daniel Casado [1 ,2 ]
Ayan, Bengisu [1 ,3 ]
Behley, Jens [2 ]
Heidingsfeld, Michael [1 ]
Stachniss, Cyrill [2 ,4 ]
机构
[1] CARIAD SE, D-38442 Wolfsburg, Germany
[2] Univ Bonn, Ctr Robot, D-53113 Bonn, Germany
[3] Tech Univ Munich, D-80333 Munich, Germany
[4] Lamarr Inst Machine Learning & Artificial Intellig, Dortmund, Germany
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 02期
关键词
Radar; Point cloud compression; Feature extraction; Transformers; Semantics; Instance segmentation; Noise measurement; Doppler radar; Robot sensing systems; Radar imaging; Deep learning methods; semantic scene understanding;
D O I
10.1109/LRA.2024.3502058
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic scene understanding, including the perception and classification of moving agents, is essential to enabling safe and robust driving behaviours of autonomous vehicles. Cameras and LiDARs are commonly used for semantic scene understanding. However, both sensor modalities face limitations in adverse weather and usually do not provide motion information. Radar sensors overcome these limitations and directly offer information about moving agents by measuring the Doppler velocity, but the measurements are comparably sparse and noisy. In this letter, we address the problem of panoptic segmentation in sparse radar point clouds to enhance scene understanding. Our approach, called SemRaFiner, accounts for changing density in sparse radar point clouds and optimizes the feature extraction to improve accuracy. Furthermore, we propose an optimized training procedure to refine instance assignments by incorporating a dedicated data augmentation. Our experiments suggest that our approach outperforms state-of-the-art methods for radar-based panoptic segmentation.
引用
收藏
页码:923 / 930
页数:8
相关论文
共 50 条
  • [1] Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds
    Zeller, Matthias
    Sandhu, Vardeep S.
    Mersch, Benedikt
    Behley, Jens
    Heidingsfeld, Michael
    Stachniss, Cyrill
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 2357 - 2372
  • [2] Semantic Segmentation of Airborne LiDAR Point Clouds With Noisy Labels
    Gao, Yuan
    Xia, Shaobo
    Wang, Cheng
    Xi, Xiaohuan
    Yang, Bisheng
    Xie, Chou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Navigable Space Construction from Sparse Noisy Point Clouds
    Chen, Zheng
    Liu, Lantao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 4720 - 4727
  • [4] BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds
    Fang, Zheng
    Zhuang, Chuanqing
    Lu, Zhengda
    Wang, Yiqun
    Liu, Lupeng
    Xiao, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1454 - 1468
  • [5] Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds Using PointNet
    Arroyo, Hector
    Keir, Paul
    Angus, Dylan
    Matalonga, Santiago
    Georgiev, Svetlozar
    Goli, Mehdi
    Dooly, Gerard
    Riordan, James
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 17762 - 17777
  • [6] SemanticFlow: Semantic Segmentation of Sequential LiDAR Point Clouds From Sparse Frame Annotations
    Zhao, Junhao
    Huang, Weijie
    Wu, Hai
    Wen, Chenglu
    Yang, Bo
    Guo, Yulan
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Gaussian Radar Transformer for Semantic Segmentation in Noisy Radar Data
    Zeller, Matthias
    Behley, Jens
    Heidingsfeld, Michael
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 344 - 351
  • [8] Unobtrusive People Identification and Tracking Using Radar Point Clouds
    Chowdhury, Arijit
    Pattnaik, Naibedya
    Ray, Arindam
    Chakravarty, Soumya
    Chakravarty, Tapas
    Pal, Arpan
    IEEE SENSORS LETTERS, 2023, 7 (12) : 1 - 4
  • [9] Robust Point Cloud Segmentation With Noisy Annotations
    Ye, Shuquan
    Chen, Dongdong
    Han, Songfang
    Liao, Jing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7696 - 7710
  • [10] A Neural Network Based System for Efficient Semantic Segmentation of Radar Point Clouds
    Cennamo, Alessandro
    Kaestner, Florian
    Kummert, Anton
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3217 - 3235