A novel approach to electricity demand forecasting: an optimized Kalman filter-based RBF model

被引:0
作者
Qosja, Agresa [1 ,2 ]
Georges, Didier [2 ]
Gjika , Eralda [3 ]
Nikolla, Ligor [3 ]
Cela, Arben [4 ]
机构
[1] Univ Metropolitan Tirana, Artificial Intelligence Lab, Tirana, Albania
[2] Univ Grenoble Alpes, Grenoble Images Parole Signal Automat Lab GIPSA la, CNRS, Grenoble INP UGA, F-38000 Grenoble, France
[3] Univ Metropolitan Tirana, Dept Comp Sci, Tirana, Albania
[4] UGE ESIEE, Lab Images Signaux & Syst Intelligents LISSI, EA 3956, Paris, France
关键词
Forecasting; Kalman filter; Step-forward validation; Grid search; Feedforward Neural Networks; Recurrent Neural Network; RECURRENT NEURAL-NETWORKS; SHORT-TERM; ENERGY DEMAND;
D O I
10.1007/s40435-025-01638-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study explores next-day electricity demand forecasting using the Kalman filter for parameter learning in a Radial Basis Function (RBF) NARMAX model. This approach is compared to batch regression-based RBF NARMAX models, Feedforward Neural Networks (FFNN), and Recurrent Neural Networks (RNN), incorporating temperature as an exogenous variable. The models are trained using a novel combination of step-forward validation and grid search for parameter selection, which enhances computational efficiency, accuracy, and model complexity. Mean Squared Error (MSE) is employed to determine the optimal parameters. Results indicate that the Kalman filter-based RBF model achieves the highest accuracy with the given dataset, outperforming neural networks in predictive performance. It proves computationally efficient and effectively captures seasonal patterns in the time series. Model performance is evaluated using MAPE, MSE, MAE, and R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>2$$\end{document}, achieving over 90% accuracy on both the training and testing sets for the recommended models.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Kalman Filter-based Signal Processing for Robot Target Tracking [J].
Gong, Baofu .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) :589-597
[42]   A Kalman Filter-Based Algorithm for Measuring the Parameters of Moving Objects [J].
Dichev, Dimitar ;
Koev, Hristofor ;
Bakalova, Totka ;
Louda, Petr .
MEASUREMENT SCIENCE REVIEW, 2015, 15 (01) :19-26
[43]   A multi-Kalman filter-based approach for decoding arm kinematics from EMG recordings [J].
Hend ElMohandes ;
Seif Eldawlatly ;
Josep Marcel Cardona Audí ;
Roman Ruff ;
Klaus-Peter Hoffmann .
BioMedical Engineering OnLine, 21
[44]   Assessment of the Kalman filter-based future shoreline prediction method [J].
D. Ciritci ;
T. Türk .
International Journal of Environmental Science and Technology, 2020, 17 :3801-3816
[45]   On noise covariance estimation for Kalman filter-based damage localization [J].
Wernitz, Stefan ;
Chatzi, Eleni ;
Hofmeister, Benedikt ;
Wolniak, Marlene ;
Shen, Wanzhou ;
Rolfes, Raimund .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 170
[46]   Kalman Filter-based Navigation System for the Amphibious Spherical Robot [J].
Xing, Huiming ;
Guo, Shuxiang ;
Shi, Liwei ;
Pan, Shaowu ;
He, Yanlin ;
Tang, Kun ;
Su, Shuxiang ;
Chen, Zhan .
2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, :638-643
[47]   Kalman filter-based approaches to hyperspectral signature similarity and discrimination [J].
Wang, Su ;
Chang, Chein-, I ;
Jensen, Janet L. ;
Jensen, J. O. .
IMAGING SPECTROMETRY XI, 2006, 6302
[48]   A Kalman filter-based prediction strategy for multiobjective multitasking optimization [J].
Dang, Qianlong ;
Yuan, Jiawei .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
[49]   On noise covariance estimation for Kalman filter-based damage localization [J].
Wernitz, Stefan ;
Chatzi, Eleni ;
Hofmeister, Benedikt ;
Wolniak, Marlene ;
Shen, Wanzhou ;
Rolfes, Raimund .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 170
[50]   A multi-Kalman filter-based approach for decoding arm kinematics from EMG recordings [J].
ElMohandes, Hend ;
Eldawlatly, Seif ;
Audi, Josep Marcel Cardona ;
Ruff, Roman ;
Hoffmann, Klaus-Peter .
BIOMEDICAL ENGINEERING ONLINE, 2022, 21 (01)