A novel approach to electricity demand forecasting: an optimized Kalman filter-based RBF model

被引:0
作者
Qosja, Agresa [1 ,2 ]
Georges, Didier [2 ]
Gjika , Eralda [3 ]
Nikolla, Ligor [3 ]
Cela, Arben [4 ]
机构
[1] Univ Metropolitan Tirana, Artificial Intelligence Lab, Tirana, Albania
[2] Univ Grenoble Alpes, Grenoble Images Parole Signal Automat Lab GIPSA la, CNRS, Grenoble INP UGA, F-38000 Grenoble, France
[3] Univ Metropolitan Tirana, Dept Comp Sci, Tirana, Albania
[4] UGE ESIEE, Lab Images Signaux & Syst Intelligents LISSI, EA 3956, Paris, France
关键词
Forecasting; Kalman filter; Step-forward validation; Grid search; Feedforward Neural Networks; Recurrent Neural Network; RECURRENT NEURAL-NETWORKS; SHORT-TERM; ENERGY DEMAND;
D O I
10.1007/s40435-025-01638-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study explores next-day electricity demand forecasting using the Kalman filter for parameter learning in a Radial Basis Function (RBF) NARMAX model. This approach is compared to batch regression-based RBF NARMAX models, Feedforward Neural Networks (FFNN), and Recurrent Neural Networks (RNN), incorporating temperature as an exogenous variable. The models are trained using a novel combination of step-forward validation and grid search for parameter selection, which enhances computational efficiency, accuracy, and model complexity. Mean Squared Error (MSE) is employed to determine the optimal parameters. Results indicate that the Kalman filter-based RBF model achieves the highest accuracy with the given dataset, outperforming neural networks in predictive performance. It proves computationally efficient and effectively captures seasonal patterns in the time series. Model performance is evaluated using MAPE, MSE, MAE, and R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>2$$\end{document}, achieving over 90% accuracy on both the training and testing sets for the recommended models.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Development of an adaptive Kalman filter-based storm tide forecasting model [J].
K. M. Mok ;
U. H. Lai ;
K. I. Hoi .
Journal of Hydrodynamics, 2016, 28 :1029-1036
[2]   Development of an adaptive Kalman filter-based storm tide forecasting model [J].
莫启明 ;
黎宇轩 ;
许嘉贤 .
Journal of Hydrodynamics, 2016, 28 (06) :1029-1036
[3]   Development of an adaptive Kalman filter-based storm tide forecasting model [J].
Mok, K. M. ;
Lai, U. H. ;
Hoi, K. I. .
Proceedings of the Second Conference of Global Chinese Scholars on Hydrodynamics (CCSH'2016), Vols 1 & 2, 2016, :176-183
[4]   Development of an adaptive Kalman filter-based storm tide forecasting model [J].
Mok, K. M. ;
Lai, U. H. ;
Hoi, K. I. .
JOURNAL OF HYDRODYNAMICS, 2016, 28 (06) :1029-1036
[5]   DYNAMICS OF ELECTRICITY DEMAND IN LESOTHO: A KALMAN FILTER APPROACH [J].
Thamae, Retselisitsoe Isaiah ;
Thamae, Leboli Zachia ;
Thamae, Thimothy Molefi .
STUDIES IN BUSINESS AND ECONOMICS, 2015, 10 (01) :130-139
[6]   Kalman Filter-based Adaptive Forecasting of PV Power Output [J].
Lee, HyunYong ;
Kim, Nac-Woo ;
Lee, Jun-Gi ;
Lee, Byung-Tak .
11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, :1342-1347
[7]   Kalman filter-based modelling and forecasting of stochastic volatility with threshold [J].
Ghosh, Himadri ;
Gurung, Bishal ;
Prajneshu .
JOURNAL OF APPLIED STATISTICS, 2015, 42 (03) :492-507
[8]   A Kalman filter-based hybridization model of statistical and intelligent approaches for exchange rate forecasting [J].
Khashei, Mehdi ;
Mahdavi Sharif, Bahareh .
JOURNAL OF MODELLING IN MANAGEMENT, 2021, 16 (02) :579-601
[9]   KFBin: Kalman Filter-Based Approach for Document Image Binarization [J].
Rahiche, Abderrahmane ;
Cheriet, Mohamed .
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 :150-161
[10]   Wholesale electricity price forecasting by Quantile Regression and Kalman Filter method [J].
Monjazeb, Mohammad Reza ;
Amiri, Hossein ;
Movahedi, Akram .
ENERGY, 2024, 290