Large deviation principle for backward stochastic differential equations with a stochastic Lipschitz condition on z

被引:1
作者
Shi, Yufeng [1 ,2 ]
Wen, Jiaqiang [3 ,4 ]
Yang, Zhi [5 ]
机构
[1] Shandong Univ, Inst Financial Studies, Natl Ctr Appl Math Shandong, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Natl Ctr Appl Math Shandong, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[5] Shandong Univ, Inst Financial Studies, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Quadratic BSDEs; parabolic PDEs; Feynman-Kac formula; Malliavin calculus; large deviation principle; QUADRATIC BSDES;
D O I
10.1142/S0219493724500436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we provide a probabilistic interpretation of the viscosity solution of a parabolic partial differential equation through the solution of a class of quadratic backward stochastic differential equations (BSDEs). Additionally, we demonstrate the convergence and the large deviation principle for the solutions of these quadratic BSDEs, which are linked to a family of Markov processes with diffusion coefficients that tend toward zero.
引用
收藏
页数:29
相关论文
共 37 条
[1]  
Barrieu P, 2009, PRINC SER FINANC ENG, P77
[2]  
Boué M, 1998, ANN PROBAB, V26, P1641
[3]   Robust stochastic discount factors [J].
Boyle, Phelim ;
Feng, Shui ;
Tian, Weidong ;
Wang, Tan .
REVIEW OF FINANCIAL STUDIES, 2008, 21 (03) :1076-1122
[4]   Quadratic BSDEs with convex generators and unbounded terminal conditions [J].
Briand, Philippe ;
Hu, Ying .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (3-4) :543-567
[5]   BSDE with quadratic growth and unbounded terminal value [J].
Briand, Philippe ;
Hu, Ying .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (04) :604-618
[6]   A simple constructive approach to quadratic BSDEs with or without delay [J].
Briand, Philippe ;
Elie, Romuald .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (08) :2921-2939
[7]   Large deviation principle for diffusion processes under a sublinear expectation [J].
Chen ZengJing ;
Xiong Jie .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (11) :2205-2216
[8]   BSDEs with terminal conditions that have bounded Malliavin derivative [J].
Cheridito, Patrick ;
Nam, Kihun .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) :1257-1285
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]  
Dembo O., 1998, Large deviations techniques and applications, V2nd