Artificial intelligence improves risk prediction in cardiovascular disease

被引:0
|
作者
Teshale, Achamyeleh Birhanu [1 ,2 ]
Htun, Htet Lin [1 ]
Vered, Mor [3 ]
Owen, Alice J. [1 ]
Ryan, Joanne [1 ]
Tonkin, Andrew [1 ]
Freak-Poli, Rosanne [1 ,4 ]
机构
[1] Monash Univ, Sch Publ Hlth & Prevent Med, Melbourne, Vic, Australia
[2] Univ Gondar, Inst Publ Hlth, Coll Med & Hlth Sci, Dept Epidemiol & Biostat, Gondar, Ethiopia
[3] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Clayton, Vic, Australia
[4] Monash Univ, Sch Clin Sci Monash Hlth, Clayton, Vic, Australia
关键词
Artificial intelligence; Cardiovascular disease; Deep learning; VALIDATION; ALGORITHMS; MODELS;
D O I
10.1007/s11357-024-01438-z
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Cardiovascular disease (CVD) represents a major public health issue, claiming numerous lives. This study aimed to demonstrate the advantages of employing artificial intelligence (AI) models to improve the prediction of CVD risk using a large cohort of relatively healthy adults aged 70 years or more. In this study, deep learning (DL) models provide enhanced predictions (DeepSurv: C-index = 0.662, Integrated Brier Score (IBS) = 0.046; Neural Multi-Task Logistic Regression (NMTLR): C-index = 0.660, IBS = 0.047), as compared to the conventional (Cox: C-index = 0.634, IBS = 0.048) and machine learning (Random Survival Forest (RSF): C-index = 0.641, IBS = 0.048) models. The risk scores generated by the DL models also demonstrated superior performance. Moreover, AI models (NMTLR, DeepSurv, and RSF) were more effective, requiring the treatment of only 9 to 10 patients to prevent one CVD event, compared to the conventional model requiring treatment of nearly four times higher number of patients (NNT = 38). In summary, AI models, particularly DL models, possess superior predictive capabilities that can enhance patient treatment in a more cost-effective manner. Nonetheless, AI tools should serve to complement and assist healthcare professionals, rather than supplant them. The DeepSurv model, selected due to its relatively superior performance, is deployed in the form of web application locally, and is accessible on GitHub (https://github.com/Robidar/Chuchu_Depl). Finally, as we have demonstrated the benefit of using AI for reassessment of an existing CVD risk score, we recommend other infamous risk scores undergo similar reassessment.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach
    Faizal, Aizatul Shafiqah Mohd
    Thevarajah, T. Malathi
    Khor, Sook Mei
    Chang, Siow-Wee
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 207
  • [22] Comparison of Supervised Techniques of Artificial Intelligence in the Prediction of Cardiovascular Diseases
    Comas-Gonzalez, Z.
    Mardini-Bovea, J.
    Salcedo, D.
    De-la-Hoz-Franco, E.
    HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023, PT VI, 2023, 14059 : 58 - 68
  • [23] The Heart of Transformation: Exploring Artificial Intelligence in Cardiovascular Disease
    Chowdhury, Mohammed A.
    Rizk, Rodrigue
    Chiu, Conroy
    Zhang, Jing J.
    Scholl, Jamie L.
    Bosch, Taylor J.
    Singh, Arun
    Baugh, Lee A.
    Mcgough, Jeffrey S.
    Santosh, K. C.
    Chen, William C. W.
    BIOMEDICINES, 2025, 13 (02)
  • [24] A primer in artificial intelligence in cardiovascular medicine
    J. W. Benjamins
    T. Hendriks
    J. Knuuti
    L. E. Juarez-Orozco
    P. van der Harst
    Netherlands Heart Journal, 2019, 27 : 392 - 402
  • [25] A primer in artificial intelligence in cardiovascular medicine
    Benjamins, J. W.
    Hendriks, T.
    Knuuti, J.
    Juarez-Orozco, L. E.
    van der Harst, P.
    NETHERLANDS HEART JOURNAL, 2019, 27 (09) : 392 - 402
  • [26] Identifying Cardiovascular Disease Risk Factors in Adults with Explainable Artificial Intelligence
    Kirboga, Kevser Kubra
    Kucuksille, Ecir Ugur
    ANATOLIAN JOURNAL OF CARDIOLOGY, 2023, 27 (11) : 657 - 663
  • [27] Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients
    Al-Droubi, Samer S.
    Jahangir, Eiman
    Kochendorfer, Karl M.
    Krive, Marianna
    Laufer-Perl, Michal
    Gilon, Dan
    Okwuosa, Tochukwu M.
    Gans, Christopher P.
    Arnold, Joshua H.
    Bhaskar, Shakthi T.
    Yasin, Hesham A.
    Krive, Jacob
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (04): : 302 - 315
  • [28] Cardiovascular Disease Risk Prediction in the HIV Outpatient Study
    Thompson-Paul, Angela M.
    Lichtenstein, Kenneth A.
    Armon, Carl
    Palella, Frank J., Jr.
    Skarbinski, Jacek
    Chmiel, Joan S.
    Hart, Rachel
    Wei, Stanley C.
    Loustalot, Fleetwood
    Brooks, John T.
    Buchacz, Kate
    CLINICAL INFECTIOUS DISEASES, 2016, 63 (11) : 1508 - 1516
  • [29] Evaluation of artificial intelligence techniques in disease diagnosis and prediction
    Ghaffar Nia N.
    Kaplanoglu E.
    Nasab A.
    Discover Artificial Intelligence, 2023, 3 (01):
  • [30] Artificial intelligence applied in cardiovascular disease: a bibliometric and visual analysis
    Zhang, Jirong
    Zhang, Jimei
    Jin, Juan
    Jiang, Xicheng
    Yang, Linlin
    Fan, Shiqi
    Zhang, Qiao
    Chi, Ming
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11