Artificial intelligence improves risk prediction in cardiovascular disease

被引:0
作者
Teshale, Achamyeleh Birhanu [1 ,2 ]
Htun, Htet Lin [1 ]
Vered, Mor [3 ]
Owen, Alice J. [1 ]
Ryan, Joanne [1 ]
Tonkin, Andrew [1 ]
Freak-Poli, Rosanne [1 ,4 ]
机构
[1] Monash Univ, Sch Publ Hlth & Prevent Med, Melbourne, Vic, Australia
[2] Univ Gondar, Inst Publ Hlth, Coll Med & Hlth Sci, Dept Epidemiol & Biostat, Gondar, Ethiopia
[3] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Clayton, Vic, Australia
[4] Monash Univ, Sch Clin Sci Monash Hlth, Clayton, Vic, Australia
关键词
Artificial intelligence; Cardiovascular disease; Deep learning; VALIDATION; ALGORITHMS; MODELS;
D O I
10.1007/s11357-024-01438-z
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Cardiovascular disease (CVD) represents a major public health issue, claiming numerous lives. This study aimed to demonstrate the advantages of employing artificial intelligence (AI) models to improve the prediction of CVD risk using a large cohort of relatively healthy adults aged 70 years or more. In this study, deep learning (DL) models provide enhanced predictions (DeepSurv: C-index = 0.662, Integrated Brier Score (IBS) = 0.046; Neural Multi-Task Logistic Regression (NMTLR): C-index = 0.660, IBS = 0.047), as compared to the conventional (Cox: C-index = 0.634, IBS = 0.048) and machine learning (Random Survival Forest (RSF): C-index = 0.641, IBS = 0.048) models. The risk scores generated by the DL models also demonstrated superior performance. Moreover, AI models (NMTLR, DeepSurv, and RSF) were more effective, requiring the treatment of only 9 to 10 patients to prevent one CVD event, compared to the conventional model requiring treatment of nearly four times higher number of patients (NNT = 38). In summary, AI models, particularly DL models, possess superior predictive capabilities that can enhance patient treatment in a more cost-effective manner. Nonetheless, AI tools should serve to complement and assist healthcare professionals, rather than supplant them. The DeepSurv model, selected due to its relatively superior performance, is deployed in the form of web application locally, and is accessible on GitHub (https://github.com/Robidar/Chuchu_Depl). Finally, as we have demonstrated the benefit of using AI for reassessment of an existing CVD risk score, we recommend other infamous risk scores undergo similar reassessment.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
Arnett DK, 2019, CIRCULATION, V140, pE563, DOI [10.1016/j.jacc.2019.03.009, 10.1161/CIR.0000000000000677, 10.1161/CIR.0000000000000678, 10.1016/j.jacc.2019.03.010]
[2]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[3]   X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization [J].
Camp, RL ;
Dolled-Filhart, M ;
Rimm, DL .
CLINICAL CANCER RESEARCH, 2004, 10 (21) :7252-7259
[4]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[5]   SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions [J].
de Vries, Tamar, I ;
Cooney, Marie Therese ;
Selmer, Randi M. ;
Hageman, Steven H. J. ;
Pennells, Lisa A. ;
Wood, Angela ;
Kaptoge, Stephen ;
Xu, Zhe ;
Westerink, Jan ;
Rabanal, Kjersti S. ;
Tell, Grethe S. ;
Meyer, Haakon E. ;
Igland, Jannicke ;
Ariansen, Inger ;
Matsushita, Kunihiro ;
Blaha, Michael J. ;
Nambi, Vijay ;
Peters, Ruth ;
Beckett, Nigel ;
Antikainen, Riitta ;
Bulpitt, Christopher J. ;
Muller, Majon ;
Emmelot-Vonk, Marielle H. ;
Trompet, Stella ;
Jukema, Wouter ;
Ference, Brian A. ;
Halle, Martin ;
Timmis, Adam D. ;
Vardas, Panos E. ;
Dorresteijn, Jannick A. N. ;
De Bacquer, Dirk ;
Di Angelantonio, Emanuele ;
Visseren, Frank L. J. ;
Graham, Ian M. .
EUROPEAN HEART JOURNAL, 2021, 42 (25) :2455-2467
[6]  
Fotso, 2019, PYSURVIVAL OPEN SOUR
[7]   Consistent estimation of the expected brier score in general survival models with right-censored event times [J].
Gerds, Thomas A. ;
Schumacher, Martin .
BIOMETRICAL JOURNAL, 2006, 48 (06) :1029-1040
[8]   REGRESSION MODELING STRATEGIES FOR IMPROVED PROGNOSTIC PREDICTION [J].
HARRELL, FE ;
LEE, KL ;
CALIFF, RM ;
PRYOR, DB ;
ROSATI, RA .
STATISTICS IN MEDICINE, 1984, 3 (02) :143-152
[9]   Machine Learning-Guided Adjuvant Treatment of Head and Neck Cancer [J].
Howard, Frederick Matthew ;
Kochanny, Sara ;
Koshy, Matthew ;
Spiotto, Michael ;
Pearson, Alexander T. .
JAMA NETWORK OPEN, 2020, 3 (11)
[10]   Development and Validation of the American Heart Association's PREVENT Equations [J].
Khan, Sadiya S. ;
Matsushita, Kunihiro ;
Sang, Yingying ;
Ballew, Shoshana H. ;
Grams, Morgan E. ;
Surapaneni, Aditya ;
Blaha, Michael J. ;
Carson, April P. ;
Chang, Alexander R. ;
Ciemins, Elizabeth ;
Go, Alan S. ;
Gutierrez, Orlando M. ;
Hwang, Shih-Jen ;
Jassal, Simerjot K. ;
Kovesdy, Csaba P. ;
Lloyd-Jones, Donald M. ;
Shlipak, Michael G. ;
Palaniappan, Latha P. ;
Sperling, Laurence ;
Virani, Salim S. ;
Tuttle, Katherine ;
Neeland, Ian J. ;
Chow, Sheryl L. ;
Rangaswami, Janani ;
Pencina, Michael J. ;
Ndumele, Chiadi E. ;
Coresh, Josef .
CIRCULATION, 2024, 149 (06) :430-449