Adaptive Deep Supervision;
Cardiac MRI Segmentation;
Deep Learning;
Ensemble of Attentions;
Mixture of Experts;
NET;
NETWORK;
FUSION;
D O I:
10.1016/j.bspc.2024.106919
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Accurate segmentation of the left ventricle, right ventricle, and myocardium is essential for estimating key cardiac parameters in diagnostic procedures. However, automating Cardiovascular Magnetic Resonance Imaging (CMRI) segmentation faces challenges from diverse imaging vendors and protocols. This study introduces MECardNet framework as an innovative multiclass CMRI segmentation model, representing a prominent advancement in the field. MECardNet leverages a Multiscale Convolutional Mixture of Experts (MCME) ensemble technique with Adaptive Deep Supervision, seamlessly integrated into the U-Net architecture. The MCME framework improves representation learning in the U-Net workflow. It does this by adaptively adjusting the contribution of U-Net layers in the ensemble for better data modeling. Additionally, MECardNet incorporates a cross-additive attention mechanism, an EfficientNetV2L backbone, and a specialized compound loss function, leading to enhanced model performance. Through 10-fold Cross-Validation (CV) analysis on the ACDC dataset, MECardNet surpasses baseline models and state-of-the-art methods, showcasing promising performance levels with evaluation metrics such as Dice Similarity Coefficient (DSC) of 96.1 f 0.4 %, Jaccard coefficient of 92.2 f 0.4 %, Hausdorff distance of 1.7 f 0.1 and mean absolute distance of 1.6 f 0.1. Further validation on the M&Ms-2 dataset and a local dataset confirms promising performance of MECardNet, with DSC of 94.3 f 0.7 % and 94.5 f 0.6 %, respectively. The proposed MECardNet framework establishes a new benchmark in CMRI segmentation by outperforming existing models, offering efficient and reliable computer-aided technologies for cardiovascular disease diagnosis, with the potential for significant impact in the field. Researchers can access MECardNet repository and results on GitHub1 for comprehensive exploration and utilization.
机构:
Hanyang Univ, Dept Automot Engn, 222 Wangsimni ro, Seoul 04763, South KoreaHanyang Univ, Dept Automot Engn, 222 Wangsimni ro, Seoul 04763, South Korea
Seo, Minsik
Min, Seungjae
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Dept Automot Engn, 222 Wangsimni ro, Seoul 04763, South KoreaHanyang Univ, Dept Automot Engn, 222 Wangsimni ro, Seoul 04763, South Korea
机构:
Duke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R ChinaDuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Chen, Yang
Yang, Zhenyu
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Yang, Zhenyu
Zhao, Jingtong
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Zhao, Jingtong
Adamson, Justus
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Adamson, Justus
Sheng, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Sheng, Yang
Yin, Fang-Fang
论文数: 0引用数: 0
h-index: 0
机构:
Duke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
Yin, Fang-Fang
Wang, Chunhao
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Radiat Oncol, Durham, NC 27710 USADuke Kunshan Univ, Med Phys Grad Program, Kunshan 215316, Jiangsu, Peoples R China
机构:
Nanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Zhang, Peiyun
Huang, Wenjun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Huang, Wenjun
Chen, Yutong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Chen, Yutong
Zhou, MengChu
论文数: 0引用数: 0
h-index: 0
机构:
New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Newark, NJ 07102 USANanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
Zhou, MengChu
Al-Turki, Yusuf
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, KA CARE Energy Res & Innovat Ctr, Jeddah 21481, Saudi ArabiaNanjing Univ Informat Sci & Technol, Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China