Homogeneous photoelectric reservoir computing system based on chalcogenide phase change materials

被引:0
|
作者
Zhao, Peng [1 ]
Yan, Senhao [1 ]
Xing, Ruoxuan [2 ]
Yao, Jiaping [1 ]
Ge, Xiang [1 ]
Li, Kai [1 ]
Cheng, Xiaomin [1 ]
Miao, Xiangshui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Hubei Key Lab Adv Memories, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
来源
MATERIALS TODAY NANO | 2025年 / 29卷
关键词
Chalcogenide phase change materials; Synapse; Homogeneous system; Reservoir computing; Sign language recognition; CHANGE MEMORY; CRYSTALLIZATION; FILMS;
D O I
10.1016/j.mtnano.2025.100576
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge1Sb4Te7 (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 106s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Resistance Drift-Reduced Multilevel Storage and Neural Network Computing in Chalcogenide Phase Change Memories by Bipolar Operation
    Li, Xin
    He, Qiang
    Tong, Hao
    Miao, Xiangshui
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (04) : 565 - 568
  • [32] Te-based chalcogenide films with high thermal stability for phase change memory
    Wang, Guoxiang
    Shen, Xiang
    Nie, Qiuhua
    Chen, Fen
    Wang, Xunsi
    Fu, Jing
    Chen, Yu
    Xu, Tiefeng
    Dai, Shixun
    Zhang, Wei
    Wang, Rongping
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
  • [33] EEG Signal Classification using Memristor-based Reservoir Computing System
    Hossain, Md Razuan
    Armendarez, Nicholas X.
    Mohamed, Ahmed S.
    Dhungel, Anurag
    Najem, Joseph S.
    Hasan, Md Sakib
    2023 IEEE 16TH DALLAS CIRCUITS AND SYSTEMS CONFERENCE, DCAS, 2023,
  • [34] Characterization of Information-Transmitting Materials Produced in Ionic Liquid-based Neuromorphic Electrochemical Devices for Physical Reservoir Computing
    Sato, Dan
    Shima, Hisashi
    Matsuo, Takuma
    Yonezawa, Masaharu
    Kinoshita, Kentaro
    Kobayashi, Masakazu
    Naitoh, Yasuhisa
    Akinaga, Hiroyuki
    Miyamoto, Shunsuke
    Nokami, Toshiki
    Itoh, Toshiyuki
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (42) : 49712 - 49726
  • [35] Nanocomposites of chalcogenide phase-change materials: from C-doping of thin films to advanced multilayers
    Chahine, Rebecca
    Tomelleri, Martina
    Paterson, Jessy
    Bernard, Mathieu
    Bernier, Nicolas
    Pierre, Francois
    Rouchon, Denis
    Jannaud, Audrey
    Mocuta, Cristian
    Giordano, Valentina M.
    Hippert, Francoise
    Noe, Pierre
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 11 (01) : 269 - 284
  • [36] Light Phase Modulation with Transparent Paraffin-Based Phase Change Materials
    Otaegui, Jaume R.
    Bertschy, Yannick
    Vallan, Lorenzo
    Schmidt, Falko
    Vasista, Adarsh
    Garcia-Guirado, Jose
    Roscini, Claudio
    Quidant, Romain
    Hernando, Jordi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (26):
  • [37] Memristor-based input delay reservoir computing system for temporal signal prediction
    Lu, Zhen-Ni
    Ye, Jing-Ting
    Zhang, Zhong-Da
    Cai, Jia-Wei
    Pan, Xiang-Yu
    Xu, Jian-Long
    Gao, Xu
    Zhong, Ya-Nan
    Wang, Sui-Dong
    MICROELECTRONIC ENGINEERING, 2024, 293
  • [38] Reservoir Computing System with Diverse Input Patterns in HfAlO-Based Ferroelectric Memristor
    Ju, Dongyeol
    Noh, Minseo
    Kim, Gimun
    Park, Yongjin
    Lee, Sejoon
    Kim, Sungjun
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (48) : 66250 - 66261
  • [39] Analog Hardware Implementation of Spike-Based Delayed Feedback Reservoir Computing System
    Li, Jialing
    Zhao, Chenyuan
    Hamedani, Kian
    Yi, Yang
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3439 - 3446
  • [40] Raman Thermometry Characterization of GeSbTe based Phase Change Materials
    Patil, Akash
    le-Friec, Yannick
    Sandrini, Jury
    Simola, Roberto
    Boivin, Philippe
    Dubois, Emmanuel
    Robillard, Jean-Francois
    2022 28TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC 2022), 2022,