Homogeneous photoelectric reservoir computing system based on chalcogenide phase change materials

被引:0
|
作者
Zhao, Peng [1 ]
Yan, Senhao [1 ]
Xing, Ruoxuan [2 ]
Yao, Jiaping [1 ]
Ge, Xiang [1 ]
Li, Kai [1 ]
Cheng, Xiaomin [1 ]
Miao, Xiangshui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Hubei Key Lab Adv Memories, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
来源
MATERIALS TODAY NANO | 2025年 / 29卷
关键词
Chalcogenide phase change materials; Synapse; Homogeneous system; Reservoir computing; Sign language recognition; CHANGE MEMORY; CRYSTALLIZATION; FILMS;
D O I
10.1016/j.mtnano.2025.100576
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge1Sb4Te7 (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 106s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Recent Advances on Neuromorphic Devices Based on Chalcogenide Phase-Change Materials
    Xu, Ming
    Mai, Xianliang
    Lin, Jun
    Zhang, Wei
    Li, Yi
    He, Yuhui
    Tong, Hao
    Hou, Xiang
    Zhou, Peng
    Miao, Xiangshui
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (50)
  • [2] Chalcogenide Phase-Change Materials: Past and Future
    Elliott, Stephen R.
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2015, 6 (01) : 15 - 18
  • [3] Endurance of chalcogenide optical phase change materials: a review
    MARTIN-MONIER, L. O. U. I. S.
    POPESCU, C. O. S. M. I. N. C. O. N. S. T. A. N. T. I. N.
    RANNO, L. U. I. G. I.
    MILLS, B. R. I. A. N.
    GEIGER, S. A. R. A. H.
    CALLAHAN, D. E. N. N. I. S.
    MOEBIUS, M. I. C. H. A. E. L.
    HU, J. U. E. J. U. N.
    OPTICAL MATERIALS EXPRESS, 2022, 12 (06) : 2145 - 2167
  • [4] Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage
    Guerin, Samuel
    Hayden, Brian
    Hewak, Daniel W.
    Vian, Chris
    ACS COMBINATORIAL SCIENCE, 2017, 19 (07) : 478 - 491
  • [5] Physical Reservoir Computing Based on Nanoscale Materials and Devices
    Qi, Zhiying
    Mi, Linjie
    Qian, Haoran
    Zheng, Weiguo
    Guo, Yao
    Chai, Yang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
  • [6] Physical Reservoir Computing Based on Nanoscale Materials and Devices
    Qi, Zhiying
    Mi, Linjie
    Qian, Haoran
    Zheng, Weiguo
    Guo, Yao
    Chai, Yang
    ADVANCED FUNCTIONAL MATERIALS, 2023,
  • [7] Photoelectric Dual-Mode and Nonvolatile Modulation Based on Ferroelectric Memristors for Reservoir Computing
    Li, Dong-Liang
    Tang, Xin-Gui
    Zhong, Wen-Min
    Sun, Qi-Jun
    Yang, Dong-Ping
    Jiang, Yan-Ping
    Liu, Qiu-Xiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (35): : 13361 - 13370
  • [8] A broad learning system based on reservoir computing
    Yang G.
    Chen P.
    Dai L.-Z.
    Yang H.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (09): : 2203 - 2210
  • [9] Recent developments concerning the sputter growth of chalcogenide-based layered phase-change materials
    Saito, Yuta
    Morota, Misako
    Makino, Kotaro
    Tominaga, Junji
    Kolobov, Alexander, V
    Fons, Paul
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 135 (135)
  • [10] Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing
    Kuzum, Duygu
    Jeyasingh, Rakesh G. D.
    Lee, Byoungil
    Wong, H. -S. Philip
    NANO LETTERS, 2012, 12 (05) : 2179 - 2186